Euler's Totient
Created:
2017-08-19
Updated:
2023-12-11
Given a natural number $n$, the Euler $\varphi$ function, also known as Euler’s Totient, applied to $n$ represents the number of positive numbers less than $n$ that are coprime with $n$.
Prime Power
$$ \varphi(p^n) = p^n (1 - \frac{1}{p}) $$Proposition. For a prime number $p$ and a natural number $n$:
Proof
Create a list of the numbers less than $p^n$ and count how many numbers in the list are not relatively prime to $p^n$.
Because $p$ is prime we are counting the multiples of $p$ that are less than $p^n$. There are $p^{n-1}$ such multiples, they are:
$$ \set{ 0, p, 2p, \ldots, p^{n-1} p } $$Thus, among the first $p^n$ numbers, $p^n - p^{n-1} = p^n (1 - 1/p)$ are coprime with $p^n$ ∎
Corollary. If $p$ is prime then $\varphi(p) = p - 1$.
Proof. Trivially follows the previous proposition for $n = 1$ ∎
Product of Primes
$$ \varphi(pq) = \varphi(p) \varphi(q). $$
Proof
Given two primes $p$ and $q$, the elements $x < pq$ such that $\gcd(x, pq) \neq 1$ are:
- $A = \set{ 0 }$
- $B = \set { p, 2p, 3p, \dots, (q-1)p }$
- $C = \set { q, 2q, 3q, \dots, (p-1)q }$
The three sets are disjoint.
That is, if $ip = jq \implies q \mid (ip) \implies q \mid i$, and this is impossible because $i < q$.
Follows that:
$$ \varphi(pq) = |\mathbb{Z}_{pq}| - (|A| + |B| + |C|) = pq - (1 + (p-1) + (q-1)) = (p-1)(q-1) = \varphi(p)\varphi(q) $$∎
Product of Coprimes
Proposition. If $m$ and $n$ are coprime then $\varphi(mn) = \varphi(m)·\varphi(n)$
Proof Construct the table of numbers from $0$ to $mn - 1$ with $m$ rows and $n$ columns.
0 | 1 | 2 | … | j | … | (n-1) | |
---|---|---|---|---|---|---|---|
$0$ | $m+0$ | $m+1$ | $2m+0$ | … | $jm+0$ | … | $(n-1)m+0$ |
$1$ | $m+1$ | $2m+1$ | $2m+1$ | … | $jm+1$ | … | $(n-1)m+1$ |
… | … | … | … | … | … | … | … |
$i$ | $m+i$ | $m+i$ | $2m+i$ | … | $jm+i$ | … | $(n-1)m+i$ |
… | … | … | … | … | … | … | … |
$m-1$ | $m+(m-1)$ | $m+(m-1)$ | $2m+(m-1)$ | … | $jm+(m-1)$ | … | $(n-1)m+(m-1)$ |
Proof (Alt). See CRT applications.
General Formula
The generic closed form formula for the sequence is:
φ(n) = n · ∏ (1 - 1/pᵢ)
With {pᵢ}
the primes in the factorization of n
.
Proof
From the above propositions and the fundamental theorem of arithmetic:
φ(n) = φ(∏ pᵢ^eᵢ) = ∏ φ(pᵢ^eᵢ) = ∏ pᵢ^eᵢ·(1 - 1/pᵢ) = n·∏(1 - 1/pᵢ)
Some values for the function
As can be easily seen from the table and the graph, the function is not monotonic.
n | φ(n) |
---|---|
1 | 1 |
2 | 1 |
3 | 2 |
4 | 2 |
5 | 4 |
6 | 2 |
7 | 6 |
8 | 4 |
9 | 6 |
10 | 4 |
11 | 10 |
12 | 4 |
13 | 12 |
14 | 6 |
15 | 8 |
16 | 8 |
17 | 16 |
18 | 6 |
19 | 18 |
20 | 8 |
21 | 12 |
22 | 10 |
23 | 22 |
24 | 8 |
25 | 20 |
26 | 12 |
27 | 18 |
28 | 12 |
29 | 28 |
30 | 8 |
31 | 30 |
32 | 16 |
33 | 20 |
34 | 16 |
35 | 24 |
36 | 12 |
37 | 36 |
38 | 18 |
39 | 24 |
40 | 16 |
41 | 40 |
42 | 12 |
43 | 42 |
44 | 20 |
45 | 24 |
46 | 22 |
47 | 46 |
48 | 16 |
49 | 42 |
50 | 20 |
51 | 32 |
52 | 24 |
53 | 52 |
54 | 18 |
55 | 40 |
56 | 24 |
57 | 36 |
58 | 28 |
59 | 58 |
60 | 16 |
61 | 60 |
62 | 30 |
63 | 36 |
64 | 32 |
65 | 48 |
66 | 20 |
67 | 66 |
68 | 32 |
69 | 44 |
References
- Modular Arithmetic Basics
- Chinese Remainder Theorem
- Sequence A000010 in the OEIS
- Wikipedia