
Journey to Zero-Knowledge

Davide Galassi
davxy@datawok.net

2023-12-30

Contents
1 Introduction 3

2 Classical Proofs 3
2.1 Deductive Reasoning . 3
2.2 Validity and Soundness . 4
2.3 Proof Systems . 5
2.4 Knowledge Sharing . 5

3 Interactive Proofs 6
3.1 Sigma Protocols . 6
3.2 Deterministic Interactive Proofs 7
3.3 Probabilistic Interactive Proofs 8
3.4 Interactive Turing Machines . 10
3.5 Interactive Proof Computational Complexity Class 11
3.6 Arthur-Merlin Protocols . 11
3.7 Examples . 12

4 Zero-Knowledge Proofs 13
4.1 Proving Zero-Knowledgeness . 14
4.2 Probability Distributions Distinguishability 15
4.3 Additional Considerations . 15

5 Simple ZK Protocols 16
5.1 Where is Waldo . 16
5.2 Ali Baba Cave . 17

6 Intermediate ZK Proofs 18
6.1 Sudoku . 18
6.2 Graph 3-Coloring . 19
6.3 Proofs for all NP . 19

1

7 More Advanced ZK Protocols 20
7.1 Graph Isomorphism . 20
7.2 Graph Non-Isomorphism . 20
7.3 Quadratic Residue . 21

8 Cryptographic ZK Protocols 22
8.1 Schnorr’s Protocol . 22
8.2 Non-Interactive Schnorr’s Protocol 23

9 Conclusions 25

2

1 Introduction
Zero-Knowledge Proofs (ZKP) represent a fascinating and influential concept
within the realm of cryptographic protocols.

At a glance, a ZKP enables one party to demonstrate the correctness of a
statement to another party without revealing any details beside the validity of
the claim itself.

ZKPs find applications in various areas, including secure authentication proto-
cols, blockchain systems, and secure computation, among others.

Another motivation is philosophical. The notion of a proof is basic to mathe-
matics and to people in general. It is a very interesting and fascinating question
whether a proof carries with it some knowledge or not.

In this paper we incrementally construct a path leading from the classic math-
ematical notion of proof to those that share zero knowledge. One of the goals
is to demystify the subject, maintaining the necessary rigor while ensuring ac-
cessibility for a broader audience.

2 Classical Proofs
2.1 Deductive Reasoning
Deductive reasoning is a fundamental method of logical thinking used across
various disciplines, from philosophy and mathematics to computer science and
law.

It involves deriving specific conclusions from a set of general premises or
known facts. The strength of deductive reasoning lies in its ability to guarantee
the truth of the conclusion, provided the premises are true, and the reasoning
process is logically correct.

One of the earliest examples of deductive reasoning can be traced back to an-
cient Greek philosophers, particularly Aristotle, who formalized the syllogistic
reasoning. A classic example of a syllogism is:

1. All men are mortal (premise).

2. Socrates is a man (premise).

3. Therefore, Socrates is mortal (conclusion).

This example captures the essence of deductive reasoning: if the premises are
true and the reasoning is valid, then the conclusion must also be true.

2.1.1 Deductive Reasoning in Mathematics

In the realm of mathematics, deductive reasoning takes a more structured form
known as a mathematical proof.

3

A mathematical proof is a logical argument presented systematically to verify
the truth of a mathematical statement. Here, deductive reasoning is used to
derive conclusions from a set of axioms (self-evident truths) and previously
established theorems (proven statements) by using some inference rules which
can be applied in the specific context.

By setting the conclusion as the statement we want to prove and the premises
as the set of axioms and previously proven theorems, we can define a proof as
a finite length string encoding the set of logical derivations that incrementally
drives the reader from the premises to the conclusion.

As all the proof reasoning relies on the basic properties of Boolean algebra, it
is implicit that Boolean logic axioms and theorems hold as premises for any
reasonable proof technique we’ll analyze in this document.

2.2 Validity and Soundness
Definition. A proof is valid if the conclusion logically follows the premises,
regardless of whether those promises are true or not.

Definition A proof is sound if it is valid and all of its premises are true.

Example: Sound proof.

• Premises:

– A, B and C are three sets such that A ∩ B ⊆ C;

– x ∈ B;

• Conclusion: x /∈ A \ C.

• Proof :

– x /∈ A \ C = ¬(x ∈ A ∧ x /∈ C) = x /∈ A ∨ x ∈ C = x ∈ A → x ∈ C

– (A ∩ B ⊆ C ∧ x ∈ B ∧ x ∈ A) → x ∈ C

Example: Valid but not sound proof:

• Premises:

– All prime numbers are odd (wrong premise).

– 2 is a prime number (as it has no divisors other than 1 and itself)

• Conclusion: 2 is odd

• Proof : The conclusion follows directly from the premises.

Since the conclusion can be derived from the premises, the proof is formally
correct, but as the second premise is incorrect it is not sound.

The example emphasize how we can reach incorrect conclusions even though we
constructed an apparently correct proof just because of a bad premise.

4

2.3 Proof Systems
A proof system is a formal and systematic approach to construct and evaluate
proofs. It typically consists of the following key components:

• Statement (x): assertion that one tries to prove.

• Proof (π): evidence or logical steps that should establish the validity of
the statement.

• Prover (P): algorithm to construct a proof for the given statement
(P (x) = π).

• Verifier (V): algorithm that, given both the statement and the proof,
decides whether the proof is valid. This algorithm outputs 1 if the proof
is correct and 0 if the proof is not correct (V (x, π) = 0|1).

Clear rules and guidelines are essential to move proof construction and checking
from the ambiguous domain of natural languages to the precise realm of formal
languages.

Proof verification is often modeled as a decision problem. The decision is
about determining whether a string x, which represents a candidate solution
to a given problem, is a member of a language L, which is the set of all the
correct solutions to the same problem. In this framework, the proof π drives
the verification algorithm towards the final verdict.

For instance, consider the Subset Sum Problem (SSP). The language for this
problem is represented as:

L = {x = (S, t) | S ⊆ N and ∃V ⊆ S : the sum of the elements in V equals t}

A string x = (S, t) belongs to the language L if and only if we can prove that
there is a subset of S which adds up to t.

Key characteristics of a proof system (P, V) for decision problems:

• Completeness: x ∈ L if and only if V (x, π) = 1.

• Soundness: x /∈ L if and only if V (x, π) = 0.

• Efficiency: V (x, π) runs in polynomial time with respect to length of x.

Where appropriate, though this document we’ll stick to the popular convention
of referring to the prover as Peggy and the verifier as Victor.

2.4 Knowledge Sharing
In a classical proof system a proof that some assertion is true inherently reveals
why it is true. This aspect is deeply rooted in how the classical mathemati-
cal proof systems work: Peggy shares all the logical steps to allow Victor to
independently reach the same conclusion.

5

Follows that the classical proof provides more knowledge than just the mere fact
that the statement is true, which is what Peggy and Victor are interested in the
first place, regardless of the way this is proven.

For instance, consider the task of proving knowledge of the factorization of a
natural number n. Peggy could simply share the list of its prime factors {pi} and
the relative exponents {ei} to allow Victor to check if n =

∏
i pei

i . In the end,
not only Victor is convinced about the statement, but he also gains knowledge
of the factorization of n.

The information which facilitates the construction of the proof is known as the
witness. In a classical proof system the witness is always contained within the
proof. However, in certain situations, Peggy may desire to keep the witness
confidential while still proving the statement.

3 Interactive Proofs
An interactive proof (IP) system extends the classical notion of proof con-
ceived as a static sequence of symbols to an interactive protocol where Peggy
incrementally convinces Victor by actively exchanging messages.

The entire sequence of messages exchanged during the protocol execution is
collectively referred to as the transcript. Two runs of the same protocol with
the same inputs can produce different transcripts depending on whether the
protocol is deterministic or probabilistic.

The idea emerged in the mid 80s from the work of Goldwasser, Micali, and
Rackoff [GMR85]. Their seminal contribution not only formally defined the con-
cept of interactive proof but also presented the first definition of zero-knowledge
proof.

3.1 Sigma Protocols
An IP system with a four1 messages transcript is called a sigma protocol.
The name is inspired by the Greek letter Σ, which shape mirrors the sequence
of the protocol’s steps:

1. Commitment: Peggy initiates the protocol by sharing some parameters.

2. Challenge: Victor issues a challenge to Peggy.

3. Response: Peggy replies to Victor’s challenge.

4. Result (optional): Victor sends a message with the verification outcome.

The names of these steps are chosen to reflect their functional roles in the
execution of typical proofs, particularly in the ZK context. For the moment the
detailed mechanics and purpose of each step are left open.

1some sources describe sigma protocols with just three messages

6

Figure 1: Sigma protocol

Sigma protocols are the most common type of protocols in the realm of interac-
tive proofs. In fact, nearly every protocol described in this paper falls into this
category.

3.2 Deterministic Interactive Proofs
A deterministic IP system is an interactive proof system which doesn’t in-
troduce any randomness in the protocol messages. In such a system, given the
same inputs the transcript is completely predictable and reproducible.

As an example, consider the protocol where Peggy wants to prove that she
knows that a number N is the product of two primes:

1. Peggy asserts she knows the factors of N .

2. Victors asks for the smaller factor.

3. Peggy sends the factor x.

4. Victor computes y = ⌈N/x⌉, checks if N = x · y and that both x and y
are primes via some deterministic algorithm.

Proposition. Every deterministic IP can be mapped into a static classic proof
and vice versa.

• To convert a static proof into a deterministic IP , the two parties can just
communicate to incrementally transfer one or more chunks of the proof.
Note that a static proof is essentially a deterministic IP with a single
message exchange.

• To convert a deterministic IP into a static proof, the prover constructs
a string encapsulating the entire protocol transcript. This construction is

7

Figure 2: Multi message deterministic IP example

Figure 3: Single message deterministic IP example

feasible because of the deterministic nature of the transcript. Victor just
needs to check if the transcript matches the expected one.

From this last result follows that deterministic IP systems are not more powerful
than static proofs with respect to the set of languages that can be proven. Due
to the limited interest on the deterministic IP systems, we’ll save the formal
definitions for the next section.

3.3 Probabilistic Interactive Proofs
In the probabilistic version of the proving system, the steps mirror those of the
deterministic counterpart, but with additional elements of randomness intro-
duced by either the prover, the verifier, or both.

The introduction of randomness into the protocol can, in some scenarios, lead
to more efficient proofs or enable to prove en entire new class of languages which
can’t be proven using deterministic proof systems.

Definition [GMR85]. A probabilistic IP system for a language L is a protocol
(P, V) for communication between a computationally unbounded machine P and
a probabilistic polynomial time machine V taking an input statement x, a mes-
sage history (hi) and randomness source(s) (rp|v) to produce the next protocol

8

message:

m1 = P (x, rp, h1 = {})
m2 = V (x, rv, h2 = {m1})
m3 = P (x, rp, h3 = {m1, m2})
...

Elaborating the definition:

• Peggy is assumed to have unbounded computational resources.

• Victor is assumed to operates within polynomial constraints relative to
the size of the statement to prove.

• Given Victor’s polynomial limitations, the number of messages exchanged
between the two actors must also be polynomially bound.

• Both Peggy and Victor have access to a private random generator.

For convenience, from now on we’ll refer to probabilistic interactive proof sys-
tems just as interactive proof (IP) systems.

Key characteristics of an IP system (P, V) for a language L:

• Completeness: If x ∈ L, then V (x, π) = 1 with high probability.

• Soundness: If x /∈ L then V (x, π) = 1 with negligible probability.

• Efficiency: Both the total computation time of V (x, π) and the overall
communication in (P, V) is polynomial with respect to length of x.

The probability ε of the verifier accepting a false statement is known as sound-
ness error probability. If for a single protocol execution ε < 1, then is always
possible to construct another protocol which runs the original one k times con-
secutively, thus exponentially reducing the error probability to an arbitrary
value εk.

3.3.1 Proving Completeness

If Peggy knows the solution to a problem, she will eventually convince Victor
as its responses will be always correct regardless of the number of protocol
repetitions and the value of ε.

3.3.2 Proving Soundness

A proof of protocol soundness generally requires to construct an extractor, a
hypothetical tool tailored for the specific protocol which allows Victor to extract
some key information used by Peggy to construct the proof.

Imagine Victor being capable of rewind Peggy’s execution without her knowl-
edge. In such a case, Peggy would re-execute the protocol exactly as before,

9

Figure 4: Prover and Verifier Interactive Turing Machines

even using the same random values as in the previous execution. From Peggy’s
perspective, these executions would appear indistinguishable. If under these
conditions Victor is able to recover some witness or the incontrovertible evi-
dence (ε = 0) about Peggy’s knowledge then the protocol is sound. The ratio-
nale is that it is statistically impossible for a dishonest prover to disclose crucial
information without possessing it.

It is important to note that the extractor is a theoretical construct, which should
not be allowed to exist in the protocol’s execution environment. For example, if
the environment is the real world, it could be something like a time machine. In
the digital world, it could be the capability to snapshot and restart the prover
state at any point.

3.4 Interactive Turing Machines
Definition. An Interactive Turing Machine (ITM) is a Turing machine
with a read-only input tape, a read-write work tape, a read-only random tape, a
read-only communication tape and a write-only communication tape.

In an IP system, both the prover (P) and the verifier (V) are defined as ITM
who share the same input tape, which generally contains the encoded assertion
to be proven.

The read-only communication tape of one machine is defined to be the write-
only communication tape of the other machine. This type of tape is used to
exchange protocol messages.

During a protocol execution, the two machines take turns in being active. With
each protocol step, the active ITM utilizes all its readable tapes as inputs for
internal computations. It then writes the resulting output to the write-only
communication tape (which corresponds to the read-only input of the other
machine) and optionally updates its state stored within the work tape.

10

Figure 5: Arthur-Merlin protocol

3.5 Interactive Proof Computational Complexity Class
In this section, we give a quick look at the complexity class associated with IP
systems. This topic is highly theoretical and falls somewhat outside the primary
focus of this paper.

Definition. The IP complexity class is the set of languages for which there
exists an IP system whose proofs can be verified in polynomial time with respect
to the length of the statement to prove.

IP = {L | L has an interactive proof }

This class can be further classified based on the IP system protocol character-
istics. For instance, IP [k] denotes the class of languages that can be decided
by an interactive proof with k rounds.

At the beginning of the 90s, Lund, Fortnow, Karloff and Nisan [LFKN90] proved
that PH ⊂ IP , indicating the significant relevance of interactive proofs as
they contain the union of all complexity classes in polynomial hierarchy (PH),
which includes NP and co − NP . Shortly later, Shamir [Sha92] proved that
IP = PSPACE, which gave a complete characterization of the capabilities of
interactive proofs.

The interaction between the prover and the verifier also leads to a novel and more
efficient verification process, allowing the verifier to assess the proof validity
without the need for the prover to share any witness (ZK proofs).

3.6 Arthur-Merlin Protocols
An Arthur-Merlin (AM) protocol, introduced by Babai [Bab85] in 1985, is an
IP system with the additional constraint that the prover and the verifier share
the same randomness source. In this context, Merlin is the prover and Arthur
is the verifier.

11

The set of decision problems that can be decided in polynomial time by an AM
protocol with k messages is called AM [k]. Babai proved that for all k ≥ 2,
AM [k] is equivalent to AM [2]. This result is due to the fact that Merlin can
observe Arthur randomness source during the whole protocol execution.

Goldwasser and Sipser [GS86] proved that for any language with an interactive
proof protocol with private randomness (IP) also has an interactive proof with
public randomness with two messages (AM [2]). In particular: AM [k] ⊂ IP [k] ⊂
AM [k + 2]. And since, for k ≥ 2, AM [k + 2] = AM [k] = AM [2] follows that
IP = AM [2].

Is worth anticipating that even though general IP systems with secret random-
ness source are not more powerful in terms of the range of languages they can
prove, the secrecy of the randomness becomes crucial for proving statements
without sharing any knowledge.

3.6.1 MA Protocols

The set of decision problems that can be verified in polynomial time using a
single message AM protocol forms the MA set. MA protocols are very similar
to traditional static proofs with the addition that the prover can use a public
randomness source to construct the proof.

3.7 Examples
3.7.1 Tetrachromacy

Tetrachromacy is a condition enabling some individuals to perceive a broader
spectrum of colors than the typical trichromat, who has three types of cone cells
for color vision. Tetrachromats have an additional cone cell type, allowing them
to see a wider range of colors.

In this scenario, Peggy claims to be tetrachromat and wants to prove it to Victor
by showing that she’s able to distinguish between two marbles who appear
identical to Victor.

Protocol:

1. Peggy places the two marbles in from of Victor and turns her back.

2. Victor flips a coin and, based on the outcome, he may swap the position
of the marbles.

3. Peggy, facing the marbles again, tells Victor whether their positions were
swapped.

4. Victor accepts if Peggy’s answer is correct.

The likelihood of Peggy falsely claiming to distinguish the marbles and being
able to cheat (soundness error) is ε = 1/2.

12

Note that in this protocol a malicious verifier may replace one of the marbles
with another, apparently equal, marble and thus use Peggy as an oracle to
determine if this new marble is equal to the replaced one.

3.7.2 Quadratic Non-Residuosity

A number y ∈ Z∗
n is a quadratic residue if there exists an x ∈ Z∗

n such that
x2 ≡ y (mod n). If no such x exists, y is a quadratic non-residue modulo n.

QR = {y | y ∈ Z∗
n and is a quadratic residue }

QNR = {y | y ∈ Z∗
n and is a quadratic non-residue }

It is considered to be a hard problem to tell if y ∈ QR or y ∈ QNR without
knowing the factorization of y.

If Peggy wants to prove to Victor that y ∈ QR or that y ∈ QNR without
sharing the factorization of y she requires an IP system. The following protocol,
proves that y ∈ QNR and is based on the fact that if y ∈ QNR then y · k2

mod n ∈ QNR for any k ∈ Z∗
n.

Protocol [GMR85]:

1. Victor selects a random r ∈ Z∗
n and flips a coin. If the coin shows heads

he sets t = r2 mod n else t = y · r2 mod n. He sends t to Peggy.

2. Peggy, which has unrestricted computing power, finds if t is a quadratic
residue and tells Victor what was his coin toss result.

3. Victor accepts if Peggy’s answer is correct.

If y /∈ QNR then y ∈ QR and thus, regardless of the coin toss result, t ∈ QR
as well. In this case Peggy has no way to recover the coin toss results and thus
the soundness error ε = 1/2.

Note that if y ∈ QNR then using this protocol a malicious verifier can use
Peggy as an oracle to learn if an arbitrary number k ∈ QR or not. As we’ll see
in the next sections we can prove both y ∈ QR or y ∈ QNR without sharing
any information.

4 Zero-Knowledge Proofs
Now that we defined the interactive class of proof system is finally time to
better discuss the core topic of this paper: the quantity of knowledge required to
validate a statement.

The concept of Zero-Knowledge Proofs (ZKP) was first rigorously defined in the
80s by Goldwasser, Micali and Rackoff [GMR85]. Before their work, most of
the effort on IP systems area focused on the soundness of the protocols. That
is, the sole conceived weakness was a malicious prover attempting to trick the

13

verifier into approving a false statement. What Goldwasser, Micali and Rackoff
did was to turn the problem into: what if instead the verifier is malicious?.

The specific concern they raised was about information leakage. Concretely,
how much extra information is Victor going to learn during the execution of the
protocol beyond the mere fact that the statement is true.

Definition. A proof system for a language L is zero-knowledge if, for all
x ∈ L, Peggy reveals to Victor a single bit of information: the fact that x ∈ L.

At first glance, one might assume that the definition forbids sharing only the
specific details regarding the how and why the statement being proven is true.
However, the criteria in ZKP are much more stringent as it encompasses any
piece of information that Victor cannot independently compute, including facts
that are not related to the proof.

The definition holds true even when Victor is not honest, bounded by his
polynomial-time capabilities.

Key attributes of a ZKP system (P, V) for a language L:

• Completeness: If x ∈ L then V (x, π) = 1 with high probability.

• Soundness: If x /∈ L then V (x, π) = 1 with negligible probability.

• Efficiency: The total computation time of V (x, π) and total communi-
cation in (P, V) is polynomial with respect to length of x.

• Zero-knowledgeness: The proof does not reveal any additional infor-
mation other than the fact that the statement is true.

The proofs of completeness and soundness follow methodologies analogous to
those employed in probabilistic interactive proof systems.

4.1 Proving Zero-Knowledgeness
The proof is based on the construction of a simulator and the basic idea is
similar to the one used to prove soundness with the extractor.

A simulator is a hypothetical tool which allows Peggy to convince Victor that a
statement is true, and thus about the knowledge of some key information, when
she doesn’t possess any knowledge.

The intuition here is that if Peggy can consistently convince Victor of the state-
ment’s truth without possessing any knowledge, then the protocol itself can’t
reveal any information to Victor. In essence, Victor cannot discern whether
Peggy truly holds any knowledge based on the protocol’s execution.

Similarly to the extractor, the implementation of the simulator is based on
rewinding Victor’s execution in order to gain some advantage without him
noticing. From Victor’s perspective, the outputs produced by the simulator
are statistically indistinguishable from any genuine protocol execution.

14

4.2 Probability Distributions Distinguishability
Distinguishability refers to the ability of a polynomially computationally
bounded Turing machine to distinguish between two random variables.

More generically, consider two families of random variables, {P (x)} and {S(x)},
defined over a language L. Indistinguishability of these two families is about
the capacity of a judge to tell if a given sample originated from P (x) or S(x)
for some x ∈ L.

The judge decision-making process is influenced by two factors:

• The size of the sample.

• The time available to decide.

Based on these parameters, P (x) and S(x) can be classified as:

• Equal: if the decision is random regardless of time and sample size.

• Statistically indistinguishable: if the decision becomes random when given
infinite time and samples with polynomial size with respect to |x|.

• Computationally indistinguishable: if the decision becomes random when
both time and samples size are polynomially bounded by |x|.

In practice, given the verifier (the judge) polynomial bounds, practical ZK proofs
are mostly concerned with computational indistinguishability.

In ZKP protocols, indistinguishability is relevant to ensure that during the pro-
tocol execution no information is leaked by the prover. The property is care-
fully evaluated when analyzing the protocol’s zero-knowledgeness as the verifier
should not be able to distinguish between the prover and the simulator messages.

4.3 Additional Considerations
Any ZK protocol must be run in an environment where the construction of
either an extractor or a simulator is infeasible.

If Victor is able to construct an extractor then it will be able to extract knowl-
edge from the proof, and thus undermine zero-knowledgeness. Conversely, if
Peggy is able to construct a simulator she will be able to forge valid proofs
without any knowledge, and thus undermine soundness.

Since re-playing a protocol compromises its fundamental properties, using a
recording of the protocol execution to convince a third party about the validity
of a proof doesn’t have any value. An observer has no way to tell if the recorded
execution is genuine or if the protocol steps were manipulated, which in practice
requires rewinding the execution.

Follows that in the context of a ZKP system the prover is able to convince only
the verifier who is actively engaged in the execution of the protocol.

15

Figure 6: A typical "Where is Waldo" illustration

5 Simple ZK Protocols
While real-world ZK proofs often rely on complex mathematical structures and
cryptographic techniques, there are intuitive examples that effectively convey
the same core principles.

Except where specifically indicated, the discussed protocols are both sound and
zero-knowledge as it is feasible (and often straightforward) to construct both an
extractor and a simulator for them.

5.1 Where is Waldo
"Where is Waldo" is a famous kid’s puzzle where, given a very detailed illustra-
tion with many different characters the goal is to find Waldo, the main character.

Peggy asserts she knows where Waldo is and wants to convince Victor without
revealing any additional information.

Protocol [NNR98]:

1. Peggy covers the illustration with a large sheet of paper (bigger that the
one with the illustration) which has a little hole in the center, positioned
exactly over Waldo’s face.

2. Victor is convinced if he sees Waldo through the hole.

Even though extremely simple, this protocol doesn’t adequately address sound-
ness concerns. How can Victor be sure the covered illustration is the original
one?

The following extended protocol is designed to be sound:

16

Figure 7: Waldo’s face is shown through the hole in the overlay sheet

1. Peggy covers the illustration with a sheet of paper large enough to conceal
the relative position of the illustration and with a hole hole positioned over
Waldo’s face. Then she covers this last with another sheet of equal size
but without any hole.

2. Victor flips a coin, and depending on the outcome, asks Peggy to either
remove both layers to reveal the illustration or just the top layer to see
Waldo’s face through the hole.

3. Peggy complies with the challenge.

4. Victor accepts or rejects based on the evidence.

Peggy committed the illustration position in the initial step so she can’t change
it. Since she doesn’t know if Victor will ask her to reveal the illustration or
the face of Waldo, she must be prepared to satisfy either of these potential
challenges. A similar principle will be used in most of the subsequent protocols.

In one run, soundness error is ε = 1/2, which means that Peggy has a 50%
chance to cheat.

5.2 Ali Baba Cave
The story is about Ali Baba, a guy who knows the magic spell to open a secret
door in a cave. The cave has a single entrance and splits into two paths, which
reconnect at the end through the magic door. Ali Baba wants to prove his
knowledge of the spell without revealing it.

Protocol [QQQ+89]:

1. Ali Baba enters the cave and randomly takes one of the two paths, while
Victor waits outside.

17

Figure 8: Ali Baba Cave ZK proof illustration

2. Victor enters the cave, goes to the bisection, flips a coin, and based on the
outcome, asks Ali Baba to come out from a specific path.

3. Ali Baba complies with the Victor’s request, using the magic door if nec-
essary.

4. Victor accepts or rejects the proof if he sees Peggy coming out from the
expected path.

For one run, soundness error is ε = 1/2.

Is worth noting that if both parties enter the cave together, Victor can observe
Ali Baba taking one path and exiting from another, confirming his knowledge
in one single run (ε = 0). However, this approach is not consistent with the
strict definition of ZK proof, which should convince only Victor. The possibility
of Victor recording the event would extend the proof’s validity verification to
anyone.

6 Intermediate ZK Proofs
6.1 Sudoku
Given a Sudoku puzzle instance, Peggy wants to convince Victor that she knows
the solution without revealing it.

Protocol [GNPR09]: 2

1. Peggy places three cards on each cell of the Sudoku grid. For pre-filled
cells she places three cards with the assigned value, face-up. For other
cells, she places the cards according to the solution, face-down.

2. Victor randomly selects one of the three cards from each cell across every
row, column and subgrid, creating 27 groups of cards.

3. Peggy shuffles each group independently, and gives the shuffled groups to
Victor.

4. Victor checks that each group contains all numbers from 1 to 9.
2Sudoku protocol demo: https://www.wisdom.weizmann.ac.il/~naor/PAPERS/SUDOKU_

DEMO

18

https://www.wisdom.weizmann.ac.il/~naor/PAPERS/SUDOKU_DEMO
https://www.wisdom.weizmann.ac.il/~naor/PAPERS/SUDOKU_DEMO

Soundness error for this protocol is ε = 1/9 (refer to [GNPR09, pp. 9] for a
proof).

6.2 Graph 3-Coloring
The generic graph N-coloring problem is about deciding if a given graph vertices
can be colored with N different colors such that no two adjacent vertices share
the same color.

Given a graph, Peggy wants to convince Victor that she knows the solution to
the 3-coloring problem for it.

Protocol [GMW91]: 3

1. Peggy draws the graph, assigns to the solution the colors randomly and
covers each vertex with a hat.

2. Victor randomly selects two adjacent vertices and asks Peggy to reveal
their colors.

3. Peggy reveals the colors of the selected vertices.

4. Victor accepts the proof if the vertices have different colors.

Let E be the number of edges in the graph, since Victor checks only one out
of the E possible ones, the soundness error probability is ε = (E − 1)/E. Even
though this value can be reduced arbitrarily by repeating the protocol, the error
approaches 1 quite fast with the number of edges and thus can be very expensive
to be performed in practice.

For example, if E = 1000 and the verifier wants ε < 0.1 then the protocol
should be iterated for k rounds where (999/1000)k < 1/10 and thus k > 2301.

6.3 Proofs for all NP
While the protocols provided in this section might seem limited in their direct
application, both are ZK proofs of knowledge of solutions for NP -complete
problems.

The implication is profound: any problem in NP class can theoretically be
converted into an instance of the 3-coloring problem, and thus a ZKP exists for
every problem in NP .

The typical method for such transformation begins with reformulating the NP
problem into a Boolean circuit. This circuit is designed to generate a true output
if and only if the input represents a correct solution to the original NP problem.
Subsequently, this Boolean circuit is converted into a graph. The construction of
this graph ensures that finding a valid 3-coloring correlates directly with solving
the original NP problem.

3Graph 3-coloring protocol demo: http://web.mit.edu/~ezyang/Public/graph/svg.html

19

http://web.mit.edu/~ezyang/Public/graph/svg.html

While theoretically feasible, this approach is often not practical. The trans-
formation process can be computationally expensive, not to mention the high
soundness error of the graph 3-coloring protocol. Therefore, in practice, where
possible specialized and more efficient approaches are employed for specific NP
problems.

7 More Advanced ZK Protocols
7.1 Graph Isomorphism
Two graphs G0 and G1 are isomorphic if there exists a bijective mapping f :
G0 → G1 such that for any edge (v, w) in G0 there is a corresponding edge
(f(v), f(w)) in G1.

The problem about determining if two graphs are isomorphic is known to be in
NP , but at the current state of knowledge, not NP -complete.

Peggy wants to prove to Victor that G0 and G1 are isomorphic without revealing
the specific mapping f such that G1 = f(G0). That is, that the (G0, G1) couple
belongs to the language:

GI = {(G0, G1) | G0 and G1 are isomorphic }

Protocol [GMW91]:

1. Peggy selects a random bit p ∈ {0, 1}, a random permutation πx and sends
H = πx(Gp) (permutation of G0 or G1) to Victor.

2. Victor selects a random bit v ∈ {0, 1} and sends it to Peggy.

3. Peggy sends the permutation πy such that πy(H) = Gv.

4. Victor checks if πy gives the expected result.

The protocol has soundness error ε = 1/2.

1. Soundness proof: Victor constructs an extractor by sending v = 0, to get
πy0 which maps H to G0. Then, he re-execute the protocol from step 2
(challenge) by sending v = 1, to get πy1 which maps H to G1. He recovers
the isomorphism f as π = πy1 · πy0 .

2. Zero-knowledgeness proof: Peggy constructs a simulator which sends H =
πx(G0). If Victor sends v = 1 then Peggy re-executes the protocol by
sending H = πx(G1). She responds to the challenge with πx.

7.2 Graph Non-Isomorphism
The Graph Non-Isomorphism problem is the complement of the Graph Isomor-
phism one, thus falls in the co − NP complexity class.

20

The problem is about checking if a pair (G0, G1) belongs to the language:

GNI = {(G0, G1) | G0 and G1 are not isomorphic }

This problem is of particular interest since, unlike GI language which, if we
ignore the ZK, can be solved using a traditional proof system by sharing the
mapping f from G0 to G1, the GNI problem based on our current knowledge
can’t be solved without an IP system.

Protocol [GMW91]:

1. Victor selects a random bit a ∈ {0, 1}, a random permutation π and sends
H = π(Ga) to Peggy.

2. Peggy using its unbounded computational power determines whether H is
a permutation of G0 or G1 (can’t be of both as they are not isomorphic).
Thus sends to Victor the bit b

3. Victor accepts the proof if a = b.

The protocol has soundness error ε = 1/2.

Note that this protocol doesn’t make use of a commitment and indeed its ZK
property is a bit flawed. Victor can send any random H and use Peggy as an
oracle to gain knowledge if H is a permutation of one of the two graphs. The
way to fix this is to require first Victor to prove to Peggy that he knows an
isomorphism between his query graph H and one of the two input graphs. This
is done using a parallel version of the GI proof protocol [GMW91, section 2.3].

7.3 Quadratic Residue
A quadratic residue modulo n is an integer x such that there exists an integer
w where w2 ≡ x (mod n).

Peggy wants to prove that x ∈ Z∗
n is an element of the language:

QR = {x | x is a quadratic residue}

All the operations are assumend to be reduced modulo n.

Protocol [GMR85]:

1. Peggy chooses a random r ∈ Z∗
n and sends y = r2 to Victor.

2. Victor tosses a coin, chooses b ∈ {0, 1} and sends it to Peggy.

3. If b = 0 then Peggy sends z = r else she sends z = r · w to Victor.

4. Victor accepts if:

(a) b = 0 and z2 = y, or

(b) b = 1 and z2 = x · y

21

The protocol the soundness error is ε = 1/2.

1. Soundness proof. Victor constructs an extractor which rewinds the pro-
tocol execution to send to Peggy both 1 and 0 for the same run. It will
thus acquire both r and r · w which allows recovering w = r−1 · (r · w).

2. Zero-knowledgeness proof. Peggy constructs a simulator such that if Vic-
tor’s challenge is 1, then she rewinds the protocol execution to commit
y = r2 · x−1 and to send as the challenge response z = r. In this way
x · y = x · (r2 · x−1) = r2 = z2 satisfies Victor’s check.

As for GI, we can prove the complement of the QR language, known as QNR.
You can find more information for this protocol in the [GMR89, paragraph 6]
paper.

8 Cryptographic ZK Protocols
We finally reached the section where we can apply what we’ve seen so far to
analyze some widespread cryptographic protocols.

The context is the realm of public key cryptography that relies on the hardness
of solving the discrete logarithm problem in a cyclic group.

8.1 Schnorr’s Protocol
Given a cyclic group G with a generator g of prime order p, Peggy wants to
prove to Victor her knowledge of the discrete logarithm x ∈ Z∗

p for some group
element y = gx ∈ G without revealing any additional information.

Protocol [Sch91]:

1. Peggy selects a random k ∈ Z∗
p and sends r = gk to Victor.

2. Victor selects a random c ∈ Z∗
p and sends it to Peggy.

3. Peggy computes s = x · c + k mod p and sends it to Victor.

4. Victor accepts if gs = yc · r.

Security considerations:

• Peggy can’t cheat because constructing a valid s requires knowledge of x.
The only scenario where she might successfully cheat is if she’s able to
predict the challenge c before committing to r. In such a case, she can
construct r = gs · y−c mod p for any chosen s.

• Victor can’t cheat because to extract the value of x from s he must com-
pute x = (s − k) · c−1. However, this requires him to solve the discrete
logarithm problem for r in order to compute k.

• The protocol has soundness error ε = 1/|Z∗
p|, thus given a reasonably big

prime p a single protocol run is sufficient.

22

8.1.1 Soundness Proof

The extractor rewinds Peggy’s execution to the challenge step after she already
responded to the challenge c1 with s1. By presenting a different challenge c2
the extractor can induce Peggy to generate a different s2 using the same k:

s1 = x · c1 + k mod p

s2 = x · c2 + k mod p

s1 − s2 = x · (c1 − c2) mod p

x = (s1 − s2) · (c1 − c2)−1 mod p

The soundness proof highlights a crucial prerequisite for the protocol. Peggy
must never reuse the same value for k in two different runs of the protocol.
Reusing k easily leads to the disclosure of her secret.

8.1.2 Zero-Knowledgeness Proof

The simulator rewinds Victor’s execution before the commitment phase after he
shared the challenge c. She can now convince him without knowing the secret
by committing to a value r computed as:

r = gs · y−c mod p

This convinces Victor, for any arbitrary s, as the equation gs = yc ·r holds true.

Is worth noting that the zero-knowledgeness proof assumes Victor to be honest
(HVZK4), which in this case means that c is not chosen in function of r. If
instead c = f(r) then our definition of simulator is ineffective.

Although certain ZKP systems can prove zero-knowledgeness property even in
the presence of a malicious verifier, this minor theoretical limitation in Schnorr’s
protocol is not a concern for practical applications.

8.2 Non-Interactive Schnorr’s Protocol
Our discussion so far has emphasized the importance of interactivity to prove
certain problems. In the real world, this remains predominantly true. However,
there is an imaginary world where this limitation can be circumvented.

Converting Schnorr’s protocol into a non-interactive proof initially seems
infeasible due to its fundamental reliance on the verifier ’s randomly chosen
challenge. Yet, this is not true in the imaginary world.

In the 80s, Fiat and Shamir [FS87] introduced a technique, known as the Fiat-
Shamir heuristic, to transform an interactive protocol into a non-interactive
proof within an imaginary environment known as the random oracle model
(ROM). Within this model we can replace the verifier ’s random challenge with

4Honest Verifier Zero-Knowledge

23

the output of a cryptographically secure hash function H seeded by both the
problem input and the prover’s commitment.

Protocol [Sch91]:

1. Peggy picks a random k ∈ Z∗
p and computes r = gk.

2. Peggy computes the challenge c = H(r) ∈ Z∗
p.

3. Peggy computes s = x · c + k mod p.

An arbitrary verifier accepts the proof if gs = yc · r.

The implications of using the Fiat-Shamir heuristic are significant, fundamen-
tally altering the assumptions used to prove soundness and zero-knowledgeness
of ZK protocols.

Of course, since we are already working in a hypothetical environment we can
also imagine to work with a programmable random oracle to artificially restore
the properties:

• Restoring soundness: in a standard settings, the extractor depends on
receiving two different responses s1 and s2 for the same commitment r,
by submitting different challenges. However, this approach doesn’t work
when using the Fiat-Shamir heuristic as c = H(r). In the ROM, the proof
holds if the extractor programs the oracle to return a different value for c
in the two different extractor’s runs.

• Restoring zero-knowledgeness: similarly, the simulator depends on pre-
dicting the challenge c before generating the commitment r. This doesn’t
work with Fiat-Shamir heuristic as c = H(r) and r should be generated
as r = gs · y−c mod p. In the ROM, the proof holds if the simulator
programs the oracle to return a fixed value for the required commitment
r.

While the concept of a programmable oracle aids in validating the protocol
within the ROM, in practical applications, the random oracle is typically realized
through a non-programmable, cryptographically secure hash function.

To summarize, although the ROM assumption is controversal5, it has been
effectively used to demonstrate the security of various real-world cryptographic
primitives. The essential practical security requirement is that the prover must
not be able to predict or control the hash output.

5https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-
and-why-3

24

8.2.1 Schnorr Signature

The non-interactive Schnorr’s protocol can be easily transformed into a signa-
ture scheme by binding a message m to the challenge c:

c = H(r, m)

9 Conclusions
The evolution from classical proofs to zero-knowledge proofs highlights a sig-
nificant shift in problem-solving techniques, illustrating how complex solutions
can be verified without sharing sensitive information.

Tracing back to the groundbreaking work of Goldwasser, Micali, and Rack-
off in the 1980s, ZK proofs have transcended their initial theoretical bound-
aries, emerging as important tools in the verification of information in today’s
technology-centric world, finding applications spanning from blockchain tech-
nology to secure cloud computing.

In recent years, ZK proofs have further evolved from being simple proofs of
knowledge to complex proofs of arbitrary computation, as exemplified by tech-
nologies like zk-SNARKs (zero-knowledge Succinct Non-Interactive Argument of
Knowledge) and zk-STARK s (zero-knowledge Scalable Transparent Argument
of Knowledge).

Looking forward, the potential of ZK proofs seems boundless. While academic
research is continually pushing the frontiers with a continuous stream of inno-
vation and proposals6, open-industry initiatives like ZKProof7 aim to develop
a shared set of standards for ZK protocols to ensure interoperability and se-
curity. These collective efforts are vital in transitioning ZK proofs from niche
cryptographic tools to more widely adopted technologies.

References
[Bab85] László Babai. Trading group theory for randomness. In Proceedings

of the Seventeenth Annual ACM Symposium on Theory of Comput-
ing, STOC ’85, pages 421–429, New York, NY, USA, 1985. Associ-
ation for Computing Machinery.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Proceedings on
Advances in Cryptology, CRYPTO ’86, pages 186–194, Berlin, Hei-
delberg, 1987. IACR, Springer-Verlag.

6https://zkp.science/
7https://zkproof.org

25

https://zkp.science/
https://zkproof.org

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems. In Proceedings of the Sev-
enteenth Annual ACM Symposium on Theory of Computing, STOC
’85, pages 291–304, New York, NY, USA, 1985. Association for Com-
puting Machinery.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems. SIAM Journal on Comput-
ing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity or all languages in np have zero-knowledge
proof systems. Journal of the ACM, 38(3):690–728, 1991.

[GNPR09] Ronen Gradwohl, Moni Naor, Benny Pinkas, and Guy N. Rothblum.
Cryptographic and physical zero-knowledge proof systems for solu-
tions of sudoku puzzles. Theory or Computing Systems, 44(2):245–
268, feb 2009.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public
coins in interactive proof systems. In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing, STOC ’86, pages
59–68, New York, NY, USA, 1986. Association for Computing Ma-
chinery.

[LFKN90] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems. In Proceedings
[1990] 31st Annual Symposium on Foundations of Computer Sci-
ence, volume 1, pages 2–10. IEEE, 1990.

[NNR98] Moni Naor, Yael Naor, and Omer Reingold. Applied kid cryptog-
raphy or how to convince your children you are not cheating. In
Proceedings of Eurocrypt ’94. IACR, 1998.

[QQQ+89] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater,
Michaël Quisquater, Louis C. Guillou, Marie Annick Guillou, Gaïd
Guillou, Anna Guillou, Gwenolé Guillou, Soazig Guillou, and
Thomas A. Berson. How to explain zero-knowledge protocols to
your children. In Proceedings of the 9th Annual International Cryp-
tology Conference on Advances in Cryptology, CRYPTO ’89, pages
628–631, Berlin, Heidelberg, 1989. IACR, Springer-Verlag.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991.

[Sha92] Adi Shamir. Ip = pspace. Journal of the ACM, 39(4):869–877, oct
1992.

26

	Introduction
	Classical Proofs
	Deductive Reasoning
	Validity and Soundness
	Proof Systems
	Knowledge Sharing

	Interactive Proofs
	Sigma Protocols
	Deterministic Interactive Proofs
	Probabilistic Interactive Proofs
	Interactive Turing Machines
	Interactive Proof Computational Complexity Class
	Arthur-Merlin Protocols
	Examples

	Zero-Knowledge Proofs
	Proving Zero-Knowledgeness
	Probability Distributions Distinguishability
	Additional Considerations

	Simple ZK Protocols
	Where is Waldo
	Ali Baba Cave

	Intermediate ZK Proofs
	Sudoku
	Graph 3-Coloring
	Proofs for all NP

	More Advanced ZK Protocols
	Graph Isomorphism
	Graph Non-Isomorphism
	Quadratic Residue

	Cryptographic ZK Protocols
	Schnorr's Protocol
	Non-Interactive Schnorr's Protocol

	Conclusions

