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Vectors

A vector is a geometric entity endowed with magnitude and direction expressed as a tuple ⟨v1 ,…, vn⟩

splitting the entire quantity in its orthogonal axis components.

An n-dimensional vector can be written as v̄=⟨v1,…,vn⟩ , where the numbers v i  are called elements

of the vector v̄ .

The components are usually labeled with the same name of the axis to which they corresponds.

A vector v̄  can be expressed as a column matrix v̄=(
v1

...
vn
)  or as a row matrix v̄T

=(v1...vn ) .

Two vectors v̄  and w̄  are equal if and only if the corresponding components are equal.

Euclidean geometric definition

If P and Q are two distinct points in the xy-plane there is exactly one line passing through P and Q. The
points part of the line that joins P to Q form a line segment PQ . If we order the points so that they

proceed from P to Q we have a directed line segment P⃗Q , or a geometric vector.

Each vector component is set as the difference between the components of the start and end points:

 v̄=P⃗Q=⟨Q1−P1, …,Qn−Pn⟩

If v̄  is a vector whose initial point is at the origin, then v̄  is called a position vector. The terminal

point of a position vector v̄=⟨v1 , ... , vn⟩  is the point T=(v1,…, vn) .

If  v̄  is  a  vector  with  initial  point  P=(p1,…, pn) ,  not  necessarily  the  origin,  and  terminal  point

Q=(q1 , …, qn) , then v̄=P⃗Q  is equal to the position vector v̄=⟨q1−p1 ,... , qn−pn⟩ .

By this definition we can replace any geometrically defined vector P⃗Q  with a position vector v̄ .

Arithmetic

Addition

The addition of two vectors v̄  and w̄  of the same size n is defined as the addition of the respective
components

v̄+ w̄=⟨ v1+w1 ,... , vn+w n⟩
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Properties

i. Closure: v̄+ w̄ ∈ Rn (grupoid)

ii. Associativity: ū+( v̄+w̄)=(ū+ v̄ )+ w̄ (semigroup)

iii. Identity: ∃ x̄∈Rn
= 0̄: v̄+0̄= v̄  (monoid)

iv. Inverse: ∀ x̄∈Rn
∃ ȳ∈Rn: x̄+ ȳ= 0̄  (group)

v. Commutativity: v̄+ w̄=w̄+ v̄  (abelian group)

With respect to the addition, vector space is an Abelian group

The difference between v̄  and w̄  is equivalent to the addition of v̄  with the negative of w̄ , obtained
by inverting the sign of all the components.

v̄−w̄=v̄+(−w̄)

Addition of vector v̄  with its opposite vector −v̄  yields the identity: v̄+(−v̄ )=0̄

Scalar multiplication

Vectors with a single component are defined as scalars.

If α  is a scalar and v̄  is a vector then α⋅̄v  is a vector where each component of v̄  is multiplied by
α

α⋅̄v=⟨α⋅v1 , …,α⋅vn⟩

0̄=0⋅̄v

– v̄=(−1)⋅v̄

v̄=1⋅̄v

Distributive property

(α+β)⋅̄v=⟨(α+β)⋅v1 ,…,(α+β)⋅vn⟩=⟨α⋅v1+β⋅v1 ,…,α⋅vn+β⋅vn⟩=α v̄+β v̄

α⋅( v̄+ w̄)=α⋅⟨v1+w1 , …, vn+wn⟩=⟨αv1+αw1 , …,α vn+αwn⟩=α v̄+α w̄

Dot product

Given two vectors v̄  and w̄ , the dot product is defined as

v̄⋅w̄=v1 w1+...+vn wn=∑
i=1 :n

v i wi

Because the result is a scalar it is also referred as scalar product.
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Properties

i. Commutativity: v̄⋅w̄=w̄⋅v̄

ii. Distributive: ū⋅(v̄+ w̄)=ū⋅̄v+ū⋅w̄

iii. v̄⋅v̄=‖v̄‖2

iv. 0̄⋅̄v=0

Proofs

i. v̄⋅w̄=∑
i=1 : n

vi w i=∑
i=1 :n

wi v i=w̄⋅̄v

ii. ū⋅(v̄+ w̄)=∑
i=1: n

ui(v i+w i)=∑
i=1 : n

ui v i+ui wi=∑
i=1 : n

ui v i+∑
i=1: n

ui w i=ū⋅̄v+ū⋅w̄

iii. v̄⋅v̄=∑
i=1 : n

v i v i=‖v̄‖2  (refer to the magnitude paragraph)

iv. 0̄⋅̄v=∑
i=1 : n

0v i=0

Geometric interpretation

In Euclidean space, the dot product between v̄  and w̄  is defined as

v̄⋅w̄=‖v̄‖‖w̄‖cosΘ

where Θ  is the angle between v̄  and w̄ .

The sides of the triangle, formed by the vectors, have lengths ‖v̄‖ , ‖w̄‖  and ‖v̄−w̄‖=‖w̄− v̄‖ .

Using the law of cosines: ‖v̄−w̄‖2
=‖v̄‖2

+‖w̄‖2
−2‖v̄‖‖w̄‖cosΘ .

Applying the property iii: (v̄ – w̄)⋅( v̄ – w̄)= v̄⋅̄v+ w̄⋅w̄−2‖v̄‖‖w̄‖cosΘ .

Applying the distributive property to the left-hand side: 

(v̄ – w̄)⋅( v̄ – w̄)=( v̄−w̄)⋅v̄−(v̄−w̄)⋅w̄= v̄⋅̄v−2 v̄⋅w̄+w̄⋅w̄ .

Combining the equations we finally get 

v̄⋅v̄−2 v̄⋅w̄+ w̄⋅w̄= v̄⋅̄v+ w̄⋅w̄−2‖v̄‖‖w̄‖cosΘ ⇒ v̄⋅w̄=‖v̄‖‖w̄‖cosΘ .

The angle Θ , 0≤Θ≤π , between two vectors v̄  and w̄  is determined by Θ=arccos(
v̄⋅w̄

‖v̄‖‖w̄‖) .
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Magnitude

The magnitude of an n-dimensional vector v̄  is denoted as ‖v̄‖  and is defined as

‖v̄‖=√v1
2
+...+vn

2
=√∑

i=1

n

vi
2

And is the distance from the initial to the terminal vector points.

A vector  0̄  for which  ‖0̄‖=0  is known as  zero vector. Note that by the definition all components

should be equal to zero. A vector ū  for which ‖ū‖=1  is known as unit vector.

The negative of a vector v̄  is – v̄  and has the same magnitude of v̄  but with the opposite direction. It
is obtained by negating each component sign.

Properties

i. ‖v̄‖≥0

ii. ‖v̄‖=0⇔ v̄=0̄

iii. ‖α⋅̄v‖=|α|⋅‖v̄‖

iv. ‖v̄‖=‖−v̄‖

Proofs

i. Follows the fact that the magnitude is the square root of sums of squares

ii. If  ‖v̄‖=0  then from the magnitude definition each component has zero value,  thus  v̄=0̄ .

If v̄=0̄  then the the magnitude definition gives a zero value.

iii. ‖α⋅̄v‖=√∑
i=1 :n

α
2 v i

2
=√α

2∑
i=1: n

v i
2
=|α|⋅‖v̄‖

iv. ‖− v̄‖=√∑
i=1 : n

(−1)2 v i
2
=√∑

i=1: n

vi
2
=‖v̄‖

Theorem. For any non-zero vector v̄  the vector ū= v̄ /‖v̄‖  is a unit vector with same direction of v̄ .

Proof.  Given that α=
1
‖v̄‖
>0  then ‖ v̄

‖v̄‖‖=‖α⋅v̄‖=|α|⋅‖v̄‖=
1
‖v̄‖
⋅‖v̄‖=1 .

Follows that if ū  is a unit vector with same direction as v̄  we can write v̄=ū⋅‖v̄‖ .

The transformation of a vector into a unit vector with the same direction is called normalization.
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Direction / Magnitude form

In  Euclidean space a vector v̄ can be described in terms of magnitude and direction, rather than in
terms of components.

Direction cosines: the cosines of the angles between the vector and the coordinate axis.

For example, in the 2-dimensional xy-plane

cosΘ1=
v̄
‖v̄‖
⋅ex=sinΘ2  

cosΘ2=
v̄
‖v̄‖
⋅e y=sinΘ1

The direction angles are between 0 and 2π  radians.

To express v̄  in terms of ‖v̄‖  and Θ  we first need to find the unit vector with the same direction as

v̄ ; that is ū= v̄ /‖v̄‖ .

The coordinates of  ū  are thus  cosΘ  and  sinΘ  then follows that

ū=cosΘ⋅i+sinΘ⋅j .

Also note that since ū= v̄ /‖v̄‖=⟨cosΘ , sinΘ⟩  then

ū⋅̄i=⟨cosΘ , sinΘ⟩⋅⟨1 , 0⟩=cosΘ

ū⋅̄j=⟨cosΘ , sinΘ⟩⋅⟨0 ,1⟩=sinΘ

Parallel and orthogonal vectors

Two vectors v̄  and w̄  are parallel if and only if there is a non-zero scalar α  such that v̄=α w̄ . In
this case the angle between them is 0 or  π .

Two vectors v̄  and w̄  are orthogonal if and only if the angle α  between them is  π /2 .

Theorem. The vectors v̄  and w̄  are orthogonal if and only if v̄⋅w̄=0

Proof. ( ⇒ ) Since v̄⋅w̄=‖v̄‖‖w̄‖cosΘ  and Θ=π/2  we have that v̄⋅w̄=‖v̄‖‖v̄‖cosπ /2=0 .
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( ⇐ ) If v̄⋅w̄=0  then we have cosΘ=0  or one of the two vectors is the vector 0̄ . If cosΘ=0  then
Θ=π/2  and the vectors are orthogonal. If one of the vectors is 0̄  we have that they are orthogonal
since, by convention, 0̄  is assumed orthogonal to every other vector.

Vector projection

The  projection of  a  vector  v̄  into  a  vector  w̄ ,  also called the vector  component  of  v̄  into the
direction of w̄ ) is the orthogonal projection of v̄  onto a straight line parallel to w̄ .

‖v̄1‖=cosΘ‖v̄‖

v1=
w̄
‖w̄‖

cosΘ‖v̄‖

v̄⋅w̄=‖v̄‖‖w̄‖cosΘ ⇒ cosΘ‖v̄‖=
v̄⋅w̄
‖w̄‖

So we finally have: v1=
w̄
‖w̄‖

v̄⋅w̄
‖w̄‖

=
v̄⋅w̄

‖w̄‖2
⋅w̄=α w̄  

Note that, because α=
v̄⋅w̄

‖w̄‖2
 is a scalar, from the parallel definition w̄  and v̄1  are parallel.

The  orthogonal  component  v̄2  of  v̄  with  respect  to  v̄1  is  trivially  given  by  v̄2= v̄− v̄1 .  We’ve

decomposed v̄  in two orthogonal vectors.

Basis vectors

Given n vectors in ℝn  if any other vector in ℝn  can be uniquely expressed as a linear combination of

them, then they are referred to as  a basis for the vector space  ℝn .  The basis components of a  n-

dimensional space can be written as {ē i :1≤i≤n } . 

Every vector in a n-dimensional space can be uniquely written as

v̄=v1 ē1+...+vn ēn  

If the basis vectors are unit vectors then they are called versors.

If the versors are mutually orthogonal they are referred as a standard basis. 

Note that the equality v̄=v1 ē1+...+vn ēn=⟨v1 , ..., vn⟩  holds if and only if each versor ē i  is part of the a

standard basis, that is a vector with all components set to 0 except the i-th that is set to 1. In our
discussion we assume that the versors are part of a standard basis. 

In 3-dimensional space, the standard basis are defined as
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ī=⟨1 , 0 ,0 ⟩ , j̄=⟨0, 1, 0 ⟩ , k̄=⟨0 ,0 ,1⟩

Given the above definitions, every vector in 3-dimensional space can be uniquely written as

v̄=v x ī+v y j̄+vz k̄=⟨vx , 0 , 0⟩+⟨0 , v y , 0⟩+⟨0 ,0 , vz⟩=⟨v x , v y , v z⟩

We can easily define the vector arithmetic operations in term of components

v̄+ w̄=(v1 ē1+…+vn ēn)+(w1 ē1+…+wn ēn)=(v1+w1) ē1+…+(vn+wn) ēn=⟨v1+w1 ,... , vn+wn⟩

α v̄=α⋅(v1 ē1+…+vn ēn)=α v1 ē1+…+α vn ēn=⟨α v1 ,... ,αvn⟩

Linear dependence and independence 

The vectors in a subset S={v̄1 , …, v̄n}  of a vector space V as ℝn  are linearly dependent if there exist

a set of scalars {a1, ... , an }  not all zeros such that 0̄=a1 v̄1+...+an v̄n .

In such a case, at least one element is not zero, say a1 , and the equation can be written as

v̄1=
−a2

a1

v̄2+...+
−an

a1

v̄n

Thus one of the vectors can be expressed as a linear combination of the others.

The vectors are said to be linearly independent if the equation 0̄=a1 v̄1+...+an v̄n  is satisfied if and

only if ai=0  for i=1 :n . Thus if they are not linearly dependent.

Geometrically, two vectors  v̄  and  w̄  are linearly dependent if one is  parallel to the other. That is
easily seen since in case of linear dependence v̄=a w̄  for some non-zero scalar α .

Given three vectors all lying on the same plane, if two of them are not parallel then those two vectors
spans the entire  plane.  The other  vector is  thus a linear  combination of them and the vectors are
linearly dependent.

If the three vectors don't all lie in the same plane through the origin, none is in the span of the other
two, so none is a linear combination of the other two. The three vectors are then linearly independent.

Theorem. If {v̄1 , …, v̄n }  are orthogonal and v̄ i≠ 0̄, ∀ i=1: n  then they are linearly independent.

Proof.  The  dot  product  between  two  vectors  is  defined  as  v̄⋅w̄=|̄v||̄v|cos(α) ,  with  α  the  angle

between  them.  Thus  if  they  are  orthogonal  then  v̄⋅w̄=|̄v||̄v|0=0 ,  while  if  v̄=w̄  then

v̄⋅w̄=|̄v||̄v|1=|̄v|2 .  If they are linearly dependent then there are  {a1 , ... , an }  not all zeros such that

0̄=a1 v̄1+...+an v̄n .  Multiplying  both  sides  by  an  arbitrary  vector  v̄ i  with  1≤i≤n  yields

(a1 v̄1+...+an v̄n)⋅̄v i=a i|̄v i|
2
=0 . Because we’ve assumed that  ∀ i v̄ i≠0̄  then  ai=0 . The procedure

can be repeated for each v i , resulting that ai=0 ∀ i , that is absurd.
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Note that lineal independence doesn’t imply orthogonality. To be linear independent is sufficient that no
other can be expressed as a linear combination of the others. As an example, in 3-dimensional space
the vectors ī=⟨1 , 0 ,0 ⟩ , j̄=⟨0 , 1 ,0 ⟩  and v̄=⟨2, 1,3 ⟩  are not orthogonal but are linearly independent,

that is we cannot express  v̄  as a linear combination of ī  and j̄ . Note that because of  their linear

independence the three vectors spans the entire ℝ3 , in other words we can express any arbitrary vector

x̄∈ℝ3  as a linear combination of the three.

Theorem. Every basis for the vector space ℝn  consists of n linearly independent vectors.

Theorem. For any vectors v̄1 ,…, v̄n  the following conditions are equivalent

• {v̄1,…, v̄n }  is a basis for ℝn

• {v̄1,…, v̄n }  is a spanning set for ℝn

• {v̄1 , …, v̄n }  is a linearly independent set

All bases for a vector space V has the same cardinality. The dimension of a vector space V, denoted

dim V, is the cardinality of its bases. For example, ℝn  has cardinality n.
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Matrices

A matrix M is defined as a bidimensional array of numbers:

M= (
a11 a12 ... a1 n

a21 a22 ... a2 n

... ... ... ...
am1 am2 ... amn

)
Each matrix entry aij  has two indices: a row index (i) and column index (j).

A matrix with m rows and n columns is called an m×n  matrix. If m=n  the matrix is square.

Equality. Two matrices A and B are equal if A and B have the same number of rows and columns and

each entry aij  in A is equal to bij  in B.

Arithmetic

Addition

If A and B have the same dimensions, then the sum A+B is a matrix C with the same dimensions as A

and B where c ij=aij+bij . The difference is equal to the sum but with the sign inverted in the elements

of the second matrix: A−B=A+(−B) .

Properties. Given three matrices A , B , C∈Rm×n  then the following properties holds

i. Closure: A+B∈Rm×n

ii. Associative: A+(B+C )=(A+B)+C

iii. Neutral element: there is Z∈Rm×n  such that A+Z=A

iv. Inverse element: for each A there is N∈Rm×n  such that A+N=Z , with Z the neutral element

v. Commutative: A+B=B+A

With the above properties the matrix set is an Abelian group.
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Scalar multiplication

If M∈Rm×n  and k is a scalar in R, then the matrix kA∈Rm×n  is obtained by multiplying each entry of
M by k. The matrix kA  is a scalar multiple of A.

Properties. Given A∈Rm×n and k ,h∈R

i. k (h(A))=(kh) A

ii. (k+h)A=kA+hA

iii. k (A+B)=kA+kB

Multiplication

A row vector is a 1×n  matrix: r̄=(r1 …rn)

A column vector is a n×1  matrix c̄=(
c1

⋮
cn
)

The product between r̄  and c̄  is equal to a 1×1  matrix, or a scalar, r̄ c̄=r1 c1+...+rn cn .

In practice, the result is equal to the vectors dot product.

Matrix product. Let A∈Rm×r  and B∈R r×n . The product AB is a matrix C∈Rm×n  whose elements

(AB)ij  are the dot product of the i-th row of A and the j-th column of B.

If Ā i∈R r  is the i-th row of A and the B̄ j∈Rr  is the j-th column of B, both of length n then

(AB)ij=∑
k=1

r

Aik Bkj= Āi⋅B̄ j

Properties. Given A∈Rm×r , B∈R r×n , C∈Rn×w  and a scalar k∈R

i. A (BC)=(AB)C ∈Rm×w

ii. k (AB)=(kA)B ∈Rm×n

Proof.

i. [A (BC)]ij=∑
k=1

r

A ik(BC)kj=∑
k=1

r

Aik (∑
z=1

n

Bkz C zj)=∑
z=1

n

∑
k=1

r

(A ik Bkz)C zj=∑
z=1

n

(AB)iz C zj=[(AB)C]ij

ii. [k (AB)]ij=k (AB)ij=k∑
z=1

r

A iz Bzj=∑
z=1

r

(kA )iz B zj=[(kA)B]ij
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The full proof of (i) requires to prove the equality ∑
k=1

r

Aik (∑
z=1

n

Bkz C zj)=∑
z=1

n

∑
k=1

r

(A ik Bkz)C zj , this can be

trivially done by expanding the sums on both sides.

Proposition. The distributive laws hold

i. A (B+C)=AB+AC

ii. (B+C)A=BC+BA

Proof. We prove only the first one. The second follows a similar argument.

[A (B+C)]ij=∑
k=1

n

Aik (B+C)kj=∑
k=1

n

Aik (B kj+C kj)=∑
k=1

n

Aik B kj+∑
k=1

n

A ik C kj=ABij+AC ij

The argument is valid because the distributive law holds in R.

Transpose. The transpose of an m×n  matrix M is an n×m  matrix M T  for which M ij=M ji
T .

Theorem. (AB)T=BT AT

Proof. (AB)ij
T
=(AB)ji=∑

k=1

n

A jk Bki=∑
k=1

n

A kj
T Bik

T
=∑

k=1

n

B ik
T A kj

T
=(BT AT

)ij

Diagonal matrix. In a square matrix M the entries for which i=j are called the main diagonal entries
of M. A square matrix whose only non-zero entries appear on the main diagonal is a diagonal matrix.

Identity matrix. A diagonal matrix whose diagonal entries are 1. Often denoted as I n∈Rn×n .

Proposition. If M∈Rm×n , then I m M=M  and M I n=M .

Proof.  ( I M )ij=∑
k=1

m

I ik M kj .  If  i=k  then  Iik=I ii=1  and  Iij M kj=M ij .  If  i≠k  then  Iik=0  and

Iik M kj=0 . Thus ( I M )ij=∑
k=1

n

I ik M kj=M ij .

The  identity  matrix  is  the  neutral  element with  respect  to  the  matrix  multiplication  in  Rn×n .  If

M∈Rn×n  then I n M=M I n=M .

Inverse Matrix. Let M∈Rn×n . If there exist M−1
∈Rn×n  such that M M−1

=M−1 M=I n  then M−1  is

called the inverse of M. If a matrix has no inverse is called singular.
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Theorem. A matrix possessing a row or a column consisting of all zeros is singular.

Proof. If M∈Rn×n  has a row r̄ i  consisting of all zeros and is not singular, then there exist M−1  such

that  M M−1
=I . Then 1=I ii=(M M−1

)ii=∑
k=1

n

M ik M ki
−1
=∑

k=1

n

0 M ki
−1
=0 , that is impossible so M must

be singular.

Theorem. M is invertible if and only if M T  is invertible.

Proof. If M is invertible there exist M−1  such that M M−1
=M−1 M=I . Because I=IT  we have  that

M M−1
=I=I T

=(M M−1
)

T
=(M−1

)
T M T  and M−1 M=I=I T

=(M−1 M )T=M T
(M−1

)
T .

Since M T
(M−1

)
T
=(M−1

)
T M T

=I , M T  is invertible and (M T
)
−1
=(M−1

)
T  is its inverse.

Conversely  if  M T  is  invertible  then  M T
(M T

)
−1
=I=I T

=[M T
(M T

)
−1
]
T
=[(M T

)
−1
]
T
[M T

]
T
=M−1 M

and, similarly, (M T
)
−1 M T

=I=I T
=[(M T

)
−1 M T

]
T
=[M T

]
T
[(M T

)
−1
]
T
=M M−1 . 

Since M [(M T
)
−1
]
T
=[(M T

)
−1
]
T M , M is invertible and M−1

=[(M T
)
−1
]
T  is its inverse.

Corollary. (M T
)
−1
=(M−1

)
T

Proof. Follows from the above theorem proof.

Theorem. If A and B are invertible matrices then AB is invertible and (AB)−1
=B−1 A−1 .

Proof. (AB)(B−1 A−1
)=A(B B−1

)A−1
=A I A−1

=A A−1
=I  and similarly (B−1 A−1

)(AB)=I .

Corollary. The set of the matrix in Rn×n  is a ring with identity (rarely commutative).

Proof. All the required properties were already proved.

Elementary operations

There are three kinds of elementary matrix operations. When these operations are performed on rows
they are called elementary row operations; and then they are performed on columns they are called
elementary column operations. 

Focusing on row operations, we have:

Row switching. A row within the matrix is switched with another row

Ri↔ R j
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Row multiplication. Each element in a row can be multiplied by a non-zero scalar a.

aRi → R i , a≠0

Row addition. A row can be replaced by the sum of that row and a multiple of another row.

Ri+aR j→ Ri , a≠0 , i≠ j

Elementary row operations are used in Gaussian elimination to reduce a matrix to row echelon form, a
technique to find the matrix inverse (if exists) and to solve linear equations.

Elementary Matrix

Each type of elementary operation may be performed on a matrix  M∈Rn×n  by multiplying it by a

special matrix E∈Rn×n  called an elementary matrix.

When E is left multiplied it represent an elementary row operation, while when E is right multiplied it
represent an elementary column operation.

Theorem. Let H be the n×n  matrix resulting from the performance of an elementary row operation
on M. Then H=EM , where E is the n×n  matrix obtained by performing the same row operation on

the identity matrix I n .

Row swap. Elementary matrix after that I’s row r has been swapped with row s:

Eij={
Iij , i≠r , i≠s
I sj , i=r
Irj , i=s

EM ij={
M ij , i≠r , i≠s
M sj , i=r
M rj , i=s

If i=r , EM ij=∑
k=1

n

E ik M kj=M sj , because Eis=I ir  is the only non-zero element.

A similar argument holds for i=s .

Row mul. Elementary matrix after that I’s row r is multiplied by a scalar a:

Eij={Iij , i≠r
a Iij , i=r

EM ij={M ij , i≠r
aM rj , i=r

15



Row add. Elementary matrix after that I’s row s has been multiplied by the scalar a and then added to
I’s row r.

Eij={Iij , i≠r
Iij+aI sj , i=r

EM ij={M ij , i≠r
M ij+aM sj , i=r

Determinant

Definition.  The  determinant  is  a  scalar  value  derived  from  the  entries  of  a  square  matrix.  The

determinant of a matrix M is denoted as det (A)  or |A| .

Minor. Given an n×n  matrix M, if M {i , j }  denotes the (n−1)×(n−1)  matrix whose entries consists

of the original entries of  M after  deleting the  i-th rown and the  j-th column, the (i,j)-minor is the

determinant of M {i , j } .

Cofactor. The (i,j)-cofactor, denoted as Cij  is defined as the (i,j)-minor multiplied by (−1)i+ j .

Cij (M )=(−1)i+ j det(Mi , j
)

Laplace Formula

The formula recursively expresses the determinant of a matrix in term of its minors.

det (M)=∑
i=1

n

M ik Cik (M )=∑
j=1

n

M kj Ckj (M )

With the determinant of an 1×1  matrix set as the entry of the matrix itself.

Unfortunately, the Laplace expansion complexity grows very quickly with the dimension of the matrix.
The number of required operations is of the order of n!.

Fortunately, determinants are mainly used as theoretical tools and are rarely calculated explicitly in
numerical linear algebra.

Example: 2×2  matrix

|a b
c d|=aC11+bC12=a|d|+b|c|=ad−bc

Example: 3×3  matrix

16



|
a b c
d e f
g h i|=aC11+bC12+c C13=a|e f

h i|−b|d f
g i|+c|d e

g h|=a(ei−fh)−b (di−fg)+c (dh−eg)=

=aei+bfg+cdh−ceg−afh−bdi

The expansion of a 3×3  matrix using the Laplace formula is also known as the Sarrus rule.

Properties

Proposition. The determinant of a triangular or diagonal matrix is the product of the main diagonal.

Proposition. The determinant of the identity matrix is 1.

Proof. Easily follows from the Laplace formula.

Theorem. If all entries in a row, or a column, are zeros, then the value of determinant is 0.

Proof. It the i-th row is equal to 0̄ . Expand across the zero row (or column) det (M )=∑
j=1

n

M ij Cij=0 .

Theorem 1. If any two rows, or columns, of a matrix are interchanged, the value of the determinant
changes sign.

Proof. By induction.

Base case: a 2×2 matrix determinant is defined as:

|a b
c d|=ad−bc=−(bc−ad)=−|b a

d c|=−|
c d
a b|

The determinant is equal to the the negative of the determinant of the same matrix with columns and
rows swapped, respectively.

Inductive step: Assuming the result is true for all the  (n−1)×(n−1)  matrices, let  G represents the

result of exchanging the rows r and s of an n×n  matrix F. Choosing another row k such that k≠r

and k≠s , Gkj=Fkj , we have

det (G)=∑
j=1

n

Gkj C kj(G)=∑
j=1

n

(−1)k+ j Gkj det (G{k , j }
)=∑

j=1

n

(−1)k+ j Fkj det (G{k , j }
)

Since G{k , j}  is an (n−1)×(n−1)  matrix,  we have det (G{k , j }
)=−det(F {k , j }

) . 

Thus det (G)=−det (F) .

Corollary. The determinant of a matrix with two identical rows, or columns, is 0.

Proof. If M has two identical rows and we exchange these two rows then no exchange has been made to

the matrix but, for the above theorem, the sign changes. Should be det (M )=−det (M )→ det(M )=0 .
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Theorem 2. If any row, or column, of a matrix is multiplied by a non-zero number a, the value of the
determinant is also changed by a factor of k.

Proof. Let G represent the result of multiplying the row i of a matrix F by the scalar k.

det (G)=∑
j=0

n

Gij C ij(G)=∑
j=1

n

k F ij C ij(F)=k∑
j=1

n

F ij C ij(F )=k det (F)

Theorem 3. Adding a multiple of one row to another row has no effect on the determinant.

Proof. Let G represent the result of adding a scalar k times row r of a matrix F to a row g of F.

det (G)=∑
j=1

n

Ggj Cgj(G)=∑
i=1

n

(k F rj+F gj)Cgj(F )= k∑
i=1

n

F rj Cgj(F)+∑
i=1

n

Fgj Cgj(F )=

= k∑
i=1

n

Frj Cgj(F )+det (F)

The quantity∑
j=1

n

F rj Cgj(F) is equivalent to the determinant of F with the entries in row g replaced by

the entries from row r. Such a matrix has two identical rows (g and r) thus its determinant is zero. 

Therefore det (G)=det (F) .

Theorem.  If  E is  an  elementary  matrix  and  M is  an  arbitrary  matrix  of  the  same  size  then

det (EM )=det(E)det (M ) .

Proof. 

If E is obtained from I by swapping two rows, then EM is obtained from M by swapping two rows. For

theorem  1  we  have  that  det (EM )=−det (M )  and,  because  det (E)=−det(I )=−1 ,  follows  that

det (EM )=det(E)det (M ) .

If E is obtained from I by multiplying a row by a scalar k, then EM is obtained from M by multiplying a

row by a scalar k. For theorem 2 we have that det (EM )=k det(M )  and, since det (E)=k det (I )=k ,

follows that det (EM )=det(E)det (M ) .

If E is obtained from I by adding a multiple of one row to another row then the matrix EM is obtained
from  M by  adding  a  multiple  of  one  row  to  another  row  (of  M).  For  theorem  3  we  have  that

det (EM )=det(M )  and, because det (E)=det (I )=1 , follows that det (EM )=det(E)det (M ) .

Theorem 1. A square matrix M is invertible if and only if det (M )≠0 .

Proof. (relying on the Gauss-Jordan elimination algorithm)

If M is invertible then it can be written as the product of elementary matrices each having a non-zero
determinant. Since the determinant of the product of elementary matrices is equal to the product of the
determinant of the matrices, then the determinant of M cannot be zero.
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Conversely, if the matrix is not invertible then it can be written as the product of elementary matrices
and a matrix having a row of zeros (because the rows are linearly dependent). Since the determinant of
a matrix possessing a row of zeros is zero, the determinant of the product is zero.

Proposition. If the square matrix M is singular then for any matrix A with the same dimension of M,
AM is singular.

Proof. If M is singular, it can be written as the product of elementary matrices and a matrix S having a
row of zeros. If  A is not singular then it can be written as the product of elementary matrices. Thus

AM=E1… E k S , and det (AM )=0 . If A is singular a similar argument shows that det (AM )=0 .

Theorem. For two square matrices F and G, det (FG)=det(F )det(G)

Proof. If either F or G is singular, then FG is singular and the equation holds since both sides are zero.

Otherwise both  F and  G can be factored into elementary matrices and the determinant of  FG is the
product of the determinant of the elementary matrices. 

Another proof for Theorem 1. If M is invertible then there exist M−1  such that MM−1
=I . Given that

1=det (I )=det (MM−1
)=det (M )det (M−1

)  then both det (M )  and det (M−1
)  should be non zero.

Theorem. If F is an n×n  square matrix and C ji(F )=C ij(F
T
)  is the (i-j)-cofactor of  FT . 

Setting Gij=C ji(F )/det (F )  we have that G=F−1 .

Proof. (FG)ij=∑
k=1

n

F ik Gkj=∑
k=1

n

Fik

C jk (F)

det (F)
=

1
det (F)

∑
k=1

n

F ik C jk (F)

If i= j  then the sum gives the det (F) , so (F G)ij=1 .

If i≠ j  the sum gives the determinant of a matrix equal to F but with row j equal to the entries of row

i. And we know that the determinant of a matrix with two equal rows is 0, so (F G)ij=0 .

Follows that FG=I .

Using the theorem above we can derive the explicit formulas for the inverse matrices.

Example. 2×2 matrix inverse

A=(a b
c d )   AT

=(a c
b d)   A−1

=
1

det (A) (
C11(A

T
) C12(A

T
)

C21(A
T
) C22(A

T
))=

1
det (A) (

d −b
−c a )   

Example. 3 times 3 matrix inverse

A=(
a b c
d e f
g h i )  AT

=(
a d g
b e h
c f i )   
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A−1
=

1
det (A) (

C11(A
T
) C12(A

T
) C13(A

T
)

C21(A
T
) C22(A

T
) C23(A

T
)

C31(A
T
) C32(A

T
) C33(A

T
)
)= 1

det (A)(
ei−hf bi−hc ei−hf
di−gf ai−gc ai−gc
dh−ge ah−gb ae−db)

Given a matrix M, the matrix of the cofactors of the transpose matrix is called adjugate matrix and is

written as adj (M ) . 

adj (A)=A−1 det(A)

Theorem. Given a matrix A∈ℝmxn  then rank (A)≤ min(m ,n) .

Proof. (Informal) If m≤n  then the result is pretty obvious and rank (A)≤m . Let’s focus on the case

where m<n . Elementary row operations don't change the rows vector space, that is, the set of linear
combinations of the rows. The number of leading ones in the elimination is at most equal to the number
of columns, because they fall in distinct columns. So the number of nonzero rows in the row echelon
form of A (which is the row rank) is at most equal to the number of columns n.

Any vector v̄∈Rn  when multiplied by a matrix A∈ℝmxn  with m<n , is mapped to Rm  vector space,
thus loosing information about one or more dimensions.

Decomposition methods

Given  a  matrix  M,  some  methods  compute  its  determinant  by  writing  M as  a  product  whose
determinants can be more easily computed.

The LU decomposition expresses M in terms of a lower triangular matrix L and an upper triangular
matrix U: M=LU

Determinant of M is thus det (M )=det (LU )=det (L)⋅det(U)  and this can be easily computed given

that the determinant of the triangular matrix is the product the respective diagonal entries.
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