G2DLP Algorithm - Analysis, Implementation and Empirical Results

Davide Galassi
September 24, 2015

Contents

1 Introduction 3
2 Prerequisites and Definitions 4
3 Support Algorithms 6
3.1 Lexicographic permutation generation 6
3.1.1 Algorithm 7
3.1.2 Analysis 8
3.1.3 Implementation 8
3.1.4 Empirical results 9
3.2 Generating all partitions of an integer 11
3.2.1 Algorithm 11
3.3 Generating all partitions of an integer with a fixed number of parts 12
3.3.1 Algorithm 12
3.3.2 Analysis 13
3.3.3 Implementation 13
3.3.4 Empirical results 16
3.4 Alternate Merge 17
3.4.1 Algorithm 17
4 Lattice paths generation with a given number of turns 17
4.0.2 Definitions and theorems 17
4.1 Trivial approach 20
4.1.1 Algorithm 21
4.1.2 Analysis 21
4.1.3 Implementation 22
4.1.4 Empirical results 22
4.2 G2DLP 25
4.2.1 Algorithm 26
4.2.2 Analysis 27
4.2.3 Implementation 31
4.2.4 Empirical results 32
4.3 Applications 38
4.3.1 Cryptography 38
4.3.2 Probability and game theory 40
References 42

Abstract

We discuss an algorithm to generate efficiently all the paths of a two-dimensional lattice with a given number of turns. The algorithm was first proposed by Kuo [4] and in this paper we will go further with an in depth complexity analysis, implementation and experimental results. The algorithm performances are then compared against a naive generation approach. Finally two potential applications of such kind of counting techniques are presented. The discussed algorithms are all accompained

 by a modern and reusable $\mathrm{C}++$ implementation.Keywords: multiset, multiset permutation, lexicographic order, colexicographic order, integer partition, lattice, lattice path, turns.

1 Introduction

Given a $2 D$ point lattice, i.e. a grid of points, in this work we will study an efficient way to generate all the paths between two arbitrary points with a given number of turns, that is the paths where the direction of the path changes a given number of times. In litterature, there are plenty of algorithms and theoretical results about lattice paths generation, but not too many that restrict the enumeration to the paths with a given number of turns.

The motivations to be interested in such counting problems touch a very different set of disciplines such as probability, statistics, cryptography, scheduling, commutative algebra, etc.

The problem of turn enumeration of lattice paths was attacked in many different ways. However there is a uniform approach which is able to handle all these problems, which is by encoding paths in terms of two-rowed arrays. Actually this is the way in which Narayana, who probably was the first to count paths with respect to their turns, used to see turn enumeration problems.

This study goes from a fairly rigorous complexity analysis to experimentation.

Experimental notes

All the source code used for the empirical results has been implemented in $\mathrm{C}++$ and all the tests were run on an Intel Core i7 CPU Q 720 @ 1.6 GHz PC.

The sources were compiled using the GNU g++ compiler without any optimization. This choice is due to the fact that compiler optimizations can heavily alter the program flow and logic from the original implementation, for example with loops unrolling, special machine instructions, branch prediction, etc. We've preferred extract our conclusions from the plain algorithms implementation that are more faithful to the theoretic descriptions. With this approach, the experimental results are also more easily comparable with other implementations that use a different programming language or for tests over different machine architectures.

The experimental results were post-processed through the Wolfram Mathematica ${ }^{\circledR}$ software to produce graphs, tables and linear functions interpolations.

Some linear functions resulting from the experimental data interpolation have an intercept that is less than zero where the interpolated data is always greather than, or equal, to zero. This is mainly caused by the smaller results values disturbing the interpolation algorithm. In general, algorithm benchmarking is not very accurate for short time intervals and small quantities and this is especially true when the performance tests are executed under a multithreaded preemptive enviroment with caches, $m m u$ and virtual memory (e.g. home PC). Under these conditions a bit of randomnes is tipically introduced and an algorithm execution tend to give more stable results for bigger data values and time intervals. Indeed, for big values, the given equations are fairly accurate.

2 Prerequisites and Definitions

Multiset. A multiset is the generalization of the concept of a set that, unlike a set, allows multiple instances of the elements. The multiplicity of an element is the number of instances of that element in a specific multiset.

For example, an infinite number of multisets exists which contain elements a and b, varying only by multiplicity.
$\{a, b\},\{a, a, b\}=\left\{a^{2}, b\right\},\{a, a, a, b, b, b, b\}=\left\{a^{3}, b^{4}\right\}, \ldots,\left\{a^{m_{1}} b^{m_{2}}\right\}$
Multiset permutation. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears exactly as often as its multiplicity in M.

An anagram of a word having some repeated letters is an example of a multiset permutation.

If the multiplicities of M are m_{1}, \ldots, m_{k} and their sum is n then the number of the multiset permutations is given by $\binom{n}{m_{1} \ldots m_{k}}$ that is the multinomial coefficient.

Lexicographic order. Given two partially ordered sets A and B, the lexicographical order on the cartesian product $A \times B$ is defined as $(a, b) \leq\left(a^{\prime} b^{\prime}\right)$ if and only if $\left(a<a^{\prime}\right) \vee\left(a=a^{\prime} \wedge b \leq b^{\prime}\right)$. The result is a partial order.

The definition can be extended to cartesian products of arbitrary length by recursively apply the definition, i.e., by observing that $A \times B \times C=A \times(B \times C)$

When applied to digit permutations, lexicographic order is an increasing numerical order.

For example, the permutations of $\{1,2,3\}$ in lexicographic order are
$123,132,213,231,312,321$.
Colexicographic order. Given two partially ordered sets A and B, the colexicographical order on the cartesian product $A \times B$ is defined as $(a, b) \leq\left(a^{\prime} b^{\prime}\right)$ if and only if $\left(b<b^{\prime}\right) \vee\left(b=b^{\prime} \wedge a \leq a^{\prime}\right)$. The result is a partial order.

As with colexicontraphic order, the definition can be extended to cartesian products of arbitraty length.

For example, the permutations of $\{1,2,3\}$ in colexicographic order are
321, 231, 312, 132, 213, 123.

Integer partition. Given a non a non negative integer n, a partition can be defined as a sequence of non negative integers $a_{1} \geq a_{2} \geq \ldots$ such that $n=a_{1}+a_{2}+\ldots$.

For example, one partition of the integer 7 is $a_{1}=3, a_{2}=3, a_{3}=1, a_{4}=$ $a_{5}=\ldots=0$.

The non zero terms are called parts and the zero terms are usually suppressed.

Two sums that differ only for the order of their summands are considered the same partition, so the order does not matter.

For example, the integer $n=4$ can be partitioned in five distinct ways $4,3+1,2+2,2+1+1,1+1+1+1$.

Lattice. A point lattice is a regularly spaced array of points. Unless otherwise specified, point lattices may be taken to refer to points in a square array, i.e. points with coordinates $\left(n_{1}, n_{2}, \ldots\right)$, where n_{1}, n_{2}, \ldots are integers. Such an array is often called a grid or a mesh and is indicated as $L\left(n_{1}, n_{2}, \ldots\right)$.

Point lattices are frequently simply called lattices, which unfortunately conflicts with the same term applied to ordered sets treated in lattice theory. In this study we will use the word lattice to refer to a point lattice.

For our scopes we will consider just $2 D$ lattices, $L\left(n_{1}, n_{2}\right)$, which denotes an integer rectangular lattice that has an horizontal x-axis and a vertical y-axis.

An in-depth description about lattice theory can be found in Stanley [6].
Lattice path. A path is composed of connected horizontal and vertical line segments, each passing between adjacent lattice points. A lattice path is therefore a sequence of points $P_{0} \ldots P_{n}$ with $n \geq 0$ such that P_{i} is a lattice point and P_{i+1} is obtained by offsetting one unit East (or West) or one unit North (or South).

When the path steps are restricted to just East (E-steps) and North (N steps) then the path length from the origin $P_{0}=(0,0)$ to a point $P_{f}=(a, b)$ is $a+b$. The set of all these paths is then given by all the permutations of the multiset $\left\{N^{a}, E^{b}\right\}$, that is all the combinations of a sequence of $a N$-steps and $b E$-steps, and there are $\binom{a+b}{a}$ different paths.

Turning points. A point in a path P which is the end point of a North step and at the same time the starting point of an East step is called a North-East turn ($N E$-turn) of the path. Similarly, a point in the path P which is the end point of a East step and at the same time the starting point of a North step is called an East-North turn (EN-turn for short) of the path. In this paper
the steps set is restricted to E-steps and N-steps so, for brevity, we will call $E N$-turns just N-turns and $N E$-turns just E-turns.

Figure 1: Turning Points

Figure 1 illustrates a possible path from the point $P_{0}=(0,0)$ to the point $P_{f}=(6,5)$. The E-turns of that path are at $(1,1),(2,3),(5,4)$ and the N-turns are at $(1,0),(2,1),(5,3),(6,4)$.

The algorithm subject to study has been developed with the intent to minimize the enumeration time of all the paths from the starting point P_{0} to a final point P_{f} with a given number of turns by omitting the generation of unwanted paths.

From a multiset perspective, a turn refers to two consecutive elements of a permutation that belong to two different items (in this context N and E). In fact, if we call a block a sequence of consecutive elements belonging to the same multiset item, then the number of turns is equal to the number of blocks minus one.

Referring again to the Figure 1, that sample path multiset permutation is generated from the multiset $\left\{N^{5}, E^{6}\right\}$ and is ENENNEEENEN. Here the number of turns is 7 and the number of blocks is clearly 8 .

3 Support Algorithms

3.1 Lexicographic permutation generation

The algorithm goes back to Narayana Pandita in $14 t h$ century India, and has been frequently rediscovered ever since, indeed an in deepth description has been given by Knuth [2] as Algorithm L.

The idea follows a simple principle, given a sequence of n elements $a_{1} a_{2} \ldots a_{n}$ initially sorted so that $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ this algorithm produces all permutations visiting them in lexicographic order.

Example. The permutations of $\{1,2,2,3\}$, ordered lexicographically, are
$1223,1232,1322,2123,2132,2213,2231,2312,2321,3122,3212,3221$
In general, the lexicographic successor of any combinatorial pattern $a_{1} \ldots a_{n}$ is obtained with a three-step procedure:

1. Find the largest i such that a_{i} can be increased.
2. Increase a_{i} by the smallest feasible amount.
3. Find the lexicographically least way to extend the new $a_{1} \ldots a_{i}$ to a complete pattern.

3.1.1 Algorithm

This particular algorithm has some characteristics that make it attractive for our scopes.

It is fast: its time complexity to generate the next permutation is linear in the length of the array $O(N)$.

It is compact: it modifies the input array in-place.
It is stateless: no memory overhead is needed to keep track of how far along it is in enumerating the permutations. The input array itself is enough to determine the next permutation.

Its output is sorted: it enumerates all permutations in lexicographic order.
Its output has no repetitions: when the input array has duplicate elements, it correctly outputs only distinct permutations.

Steps.

1. [Visit] Visit the permutation $a_{1} \ldots a_{n}$.
2. [Find i] Set $i \leftarrow n-1$. While $a_{i} \geq a_{i+1}$ decrease i by 1 repeatedly. Terminate if $i=0$. (At this point i is the smallest subscript such that we have already visited all permutations beginning with $a_{1} \ldots a_{i}$. Therefore the lexicographically next permutation will increase the value of a_{i})
3. [Increase $\left.a_{i}\right]$ Set $j \leftarrow n$. While $a_{i} \geq a_{j}$ decrease j by 1 repeatedly. Then interchange $a_{i} \leftrightarrow a_{j}$. (Since $a_{i+1} \geq \ldots \geq a_{n}$, the element a_{j} is the smallest element greather than a_{i} that can legitimately follow a_{1}, \ldots, a_{i-1} in a permutation. Before the interchange we had $a_{i+1} \geq \ldots \geq a_{j-1} \geq$ $a_{j}>a_{i} \geq a_{j+1} \geq \ldots \geq a_{n} ;$ after the interchange we have $a_{i+1} \geq \ldots \geq$ $\left.a_{j-1} \geq a_{i}>a_{j} \geq a_{j+1} \geq \ldots \geq a_{n}\right)$
4. [Reverse $\left.a_{i+1} \ldots a_{n}\right]$ Set $k \leftarrow i+1$ and $j \leftarrow n$. Then, if $k<j$, interchange $a_{k} \leftrightarrow a_{j}$, set $k \leftarrow k+1$, set $j \leftarrow j-1$ and repeat until $k \geq j$. Return to step 1 .

3.1.2 Analysis

The input string can be viewed as a multiset M of cardinality n and multiplicities m_{1}, \ldots, m_{k}.

To find all the permutations the algorithm outer loop is executed $\binom{n}{m_{1} \ldots m_{k}}-1$ times (the first visit comes for free).

For each outer loop iteration the steps 1 to 4 are executed, whose complexities are, in general, $O(n)$.

The worst case, that is the greater number of permutations, is given when all the elements of the input sequence are distinct. In this case, ignoring the inner steps complexities, the cost of the algorithm to visit all the permutations is clearly $O(n!)$.

3.1.3 Implementation

The implementation of the algorithm consists of a generic template function that, given an arbitrary sequence, generates the next permutation by following the lexicographic order ${ }^{1}$.

If the function can determine the next higher permutation, it rearranges the elements as such and returns true. If that was not possible, because it is already at the largest possible permutation, it rearranges the elements according to the first permutation (sorted in ascending order) and returns false.

```
//! Rearranges the elements in the range [first, last) into
//! the next lexicographically greater permutation.
//!
//! @param first
//! sequence first element iterator
//! @param last
//! sequence last element iterator
//! @return
//! True if the function can rearrange the object as a
//! lexicographically greater permutation. Otherwise, the
//! function returns false to indicate that the arrangement
//! is not greater than the previous, but the lowest
//! possible (sorted in ascending order).
template <typename Iterator>
bool next_permute(Iterator first, Iterator last)
{
    Iterator &a = first;
    int n = last-first;
    // Step 2 : Find i
    int i = n-2;
    while (0 <= i && a[i] >= a[i+1])
        i--;
    if (i < 0) // Termination condition
    {
```

[^0] function next_permutation

```
    // rearrange to the smaller permutation
    for (int k = 0, j = n-1; k < j; k++, j--)
        std::swap(a[k], a[j]);
        return false;
}
// Step 3: increase a[i]
int j = n-1;
while (a[i] >= a[j])
    j--;
std::swap(a[i], a[j]);
// Step 4: reverse a[i+1] ... a[n-1]
for (int k = i+1, j = n-1; k < j; k++, j--)
    std::swap(a[k], a[j]);
return true;
```

\}

Along with the main function, an additional function is proposed to visit each generated permutation.

```
//! Visit function pointer type alias.
template <typename Iterator>
using visit_func = void (*)(Iterator first, Iterator last);
//! Generates and visits all the sequence permutations.
//!
//! @param first
//! Sequence first element iterator.
//! @param last
//! Sequence last element iterator.
//! @param visit
//! Visit function pointer.
template <typename Iterator>
void visit_permutations(Iterator first, Iterator last,
                                    visit_func<Iterator> visit)
{
    do {
        // Step 1 : Visit
        visit(first, last);
    } while (next_permute(first, last));
}
```


3.1.4 Empirical results

The algorithm has been applied to lists with distinct elements to examine the timing of the worst case.

Variables

- n : sequence length;
- perms : number of permutations;
- time : computation time in milliseconds.

n	perms	time
2	2	0.000738
3	6	0.001853
4	24	0.005877
5	120	0.027832
6	720	0.166443
7	5040	1.2794
8	40320	10.2236
9	362880	31.5605
10	3628800	284.302
11	39916800	3138.69
12	479001600	38072.1
13	6227020800	493848.

Table 1: Permutations results
The permutations numbers grows very fast, to allow a better view of the graph points the x and y axis values were logarithmically scaled.

Figure 2: perms $=f(n)$, time $=g(n)$

As expected the empirical results are coherent with the theoretical ones. When all the elements are different the complexity is $O(n!)$. We can also note that the time fits well as a linear function of the number of permutations; that means that the generation complexity of each permutation can be assumed to be linear.

Figure 3: time $=h($ perms $)$
The data interpolation, when all the sequence elements are distinct, gives the following linear relation between paths and time:

$$
\text { time }=0.0000793073 \cdot \text { perms }+5.29699
$$

3.2 Generating all partitions of an integer

Even if this algorithm is not directly used by the G2DLP algorithm, it is conceptually linked with the other partitioning algorithm presented that is instead used directly, therefore, for completeness, it has been examined and implemented as well ${ }^{2}$.

The simplest and one of the fastest way to generate all partitions is to visit them in reverse lexicographic order starting with n and ending with $1 \ldots 1$.

Example. The partitions of 8 are
$8,71,62,611,53,521,5111,44,431,422,4211,41111,332,3311$,
3221, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111
The algorithm was described by Knuth [1] as Algorithm P.
If a partition isn't all 1 s , it ends with $(x+1)$ followed by zero or more 1 s, for some $x>1$; therefore the next smallest partition in lexicographic order after $[\ldots](x+1)[1 \ldots 1]$ is obtained by replacing the suffix $(x+1)[1 \ldots 1]$ by $x[\ldots x] r$ for some appropriate remainder $r \leq x$.

That is, given the partition $p_{i}=[\ldots](x+1)[1 \ldots 1]$, the next partition in lexicographic order will be $p_{i+1}=[\ldots] x[\ldots x] r$. If we set k equal to the number of 1 s in the suffix of p_{i} plus one, then the number of $x \mathrm{~s}$ of p_{i+1} is given by one plus the integer quotient of k / x and r is given by its remainder .

Example. $p_{i}=9741111111$ then $x=3, k=8$ and $p_{i+1}=973332$.

3.2.1 Algorithm

This algorithm generates all partitions $a_{1} \ldots a_{m}$ for the positive integer $n \geq 1$ with $a_{1} \geq a_{2} \geq \ldots \geq a_{m} \geq 1, a_{1}+a_{2}+\ldots+a_{m}=n$, and $1 \leq m \leq n$.

[^1]
Steps.

1. [Initialize] Set $a_{0} \leftarrow 0$ and $m \leftarrow 1$.
2. [Store the final part] Set $a_{m} \leftarrow n$ and if $n=1$ then $q \leftarrow m-1$ else $q \leftarrow m$.
3. [Visit] Visit the partition $a_{1} a_{2} \ldots a_{m}$. Then if $a_{q} \neq 2$ go to Step 5 .
4. [Change 2 to $1+1$] Set $a_{q} \leftarrow 1, q \leftarrow q-1, m \leftarrow m+1, a_{m} \leftarrow 1$, and return to step 3 .
5. [Decrease a_{q}] Terminate the algorithm if $q=0$. Otherwise set $x \leftarrow a_{q}-1$, $a_{q} \leftarrow x, n \leftarrow m-q+1$, and $m \leftarrow q+1$.
6. [Copy x if necessary] If $n \leq x$, return to step 2. Otherwise set $a_{m} \leftarrow x$, $m \leftarrow m+1, n \leftarrow n-x$, and repeat this step.

3.3 Generating all partitions of an integer with a fixed number of parts

The following algorithm generates all partitions of a positive integer n into a fixed number of parts m in colexicographic order.

For example, when $n=11$ and $m=4$ the successive partitions visited are:
8111, 7211, 6311, 5411, 6221, 5321, 4421, 4331, 5222, 4322, 3332
The method was featured in Hindenburg's 18-th century dissertation (Infinitinomii Dignitatum Exponentis Indeterminati) and was deeply described by Knuth [1] as Algorithm H.

The basic idea is that colexicographic order goes from one partition $a_{1} \ldots a_{m}$ to the next by finding the smallest j such that a_{j} can be increased without changing $a_{j+1} \ldots a_{m}$.

The new partition $a_{1}^{\prime} \ldots a_{m}^{\prime}$ will have $a_{1}^{\prime} \geq \ldots \geq a_{j}^{\prime}=a_{j}+1$ and $a_{1}^{\prime}+\ldots+a_{j}^{\prime}=$ $a_{1}+\ldots+a_{j}$, and these conditions are achievable if and only if $a_{j}<a_{1}-1$. Furthermore, the smallest such partition $a_{1}^{\prime} \ldots a_{m}^{\prime}$ in colexicographic order has $a_{2}^{\prime}=\ldots=a_{j}^{\prime}=a_{j}+1$.

3.3.1 Algorithm

This algorithm generates all integer m-tuples $a_{1} \ldots a_{m}$ such that $a_{1} \geq \ldots \geq$ $a_{m} \geq 1$ and $a_{1}+\ldots+a_{m}=n$, assuming that $n \geq m \geq 2$.

Steps.

1. [Initialize] Set $a_{1} \leftarrow n-m+1$ and $a_{j} \leftarrow 1$ for $1<j \leq m$. Also set $a_{m+1} \leftarrow-1$.
2. [Visit] Visit the partition $a_{1} \ldots a_{m}$. Then go to step 4 if $a_{2} \geq a_{1}-1$.
3. [Tweak a_{1} and a_{2}] Set $a_{1} \leftarrow a_{1}-1, a_{2} \leftarrow a_{2}+1$, and return to step 2 .
4. [Find j] Set $j \leftarrow 3$ and $s \leftarrow a_{1}+a_{2}-1$. Then, if $a_{j} \geq a_{1}-1$, set $s \leftarrow s+a_{j}$, $j \leftarrow j+1$, and repeat until $a_{j}<a_{1}-1$. (Now $s=a_{1}+\ldots+a_{j-1}-1$)
5. [Increase a_{j}] Terminate if $j>m$. Otherwise set $x \leftarrow a_{j}+1, a_{j} \leftarrow x$, $j \leftarrow j-1$.
6. [Tweak $a_{1} \ldots a_{j}$] While $j>1$, set $a_{j} \leftarrow x, s \leftarrow s-x, j \leftarrow j-1$. Finally set $a_{1} \leftarrow s$ and return to step 2 .

3.3.2 Analysis

Given two non negative integers n and m, with $m \leq n$, the generation time complexity of the set of all the partitions of n with a fixed number of parts m is strictly bound to the cardinality of the resulting set. Such a number is given by the recursive function

$$
p(n, m)= \begin{cases}1 & m=1 \\ p(n-1, m-1)+p(n-m, m) & m \leq n \\ 0 & \text { default }\end{cases}
$$

A plot for this function for a fixed value of n and $0<m \leq n$ is given in Figure 6. The graph of the function allows us to speculate that the maximum number of partitions is given for $m \approx 0.2 n$. Such a value can be taken as the algorithm worst case in terms of running time with a given value n.

Furthermore, analyzing the function graph for a fixed value of m we can deduce that the grow is clearly exponential in function of n.

Figure 4: Partition results: partitions $=f(n, m=5)$

An in-depth study about this topic is given by Wilf [8].

3.3.3 Implementation

The algorithm has been implemented as a function template that generates the next partition following the current in lexicographic order. If the function can determine the next partition, it rearranges the elements as such and returns
true. If that was not possible it rearranges the elements according to the first partition (in lexicographic order) and returns false.

Note, this implementation differs from the Kuo's choice to use directly the original implementation provided by Knuth, that is the one where the results are given by following a colexicographic order. Our motivations for the lexicographic ordering choice are clear if we consider that (later) the output of the algorithm Partition will be used as the input of the algorithm Permute, and this last one needs an input sequence that is already lexicographically ordered. Although this modification omits only a linear time operation (the inversion of each sequence), and as such does not alter the overall complexity, the solution is clearly more elegant.

```
//! Uses the input sequence [first,last) elements to generate the
//! next greater partition in lexicographic order.
//!
//! @param first
//! Sequence first element iterator.
//! @param last
//!
//!
ereturn
//! True if the function could generate a lexicographically
//! greater partition. Otherwise, the function returns false
//! to indicate that the arrangement is not greater than the
//! previous, but the lowest possible (in ascending order).
template <typename Iterator>
bool next_partition(Iterator first, Iterator last)
{
    Iterator &a = first;
    int m = last-first;
    if (m < 2)
        return false;
    if (a[m-2] < a[m-1]-1)
{
        // Step 3 : tweak a[0] and a[1]
        a[m-2]++;
        a [m-1]--;
}
else
{
    // Step 4 : find j
    int j = m-3;
    int s = a[m-2] + a[m-1] - 1;
    while (j != -1 && a[j] >= a[m-1]-1)
    {
        s += a[j];
        j--;
    }
    if (j == -1) // Termination condition
    {
        // Reset to the smallest partition
        first_partition(s+1, first, last);
        return false;
    }
```

```
        // Step 5 : increase a[j]
        int x = a[j] + 1;
        a[j] = x;
        j++;
        // Step 6 : tweak a[j]...a[m-1]
        while (j < m-1)
        {
            a[j] = x;
            s -= x;
            j++;
        }
        a[j] = s;
    }
return true;
```

\}

Along with the main function, two additional functions are proposed. One to generate the first integer partition (in lexicographical order) and one to sequentially visit each generated partition.

```
//! Generates the lexicographically smaller partition that can
//! be obtained from the integer n filling the sequence elements.
//! All but the last elements of the sequence are set to 1.
//! Precondition: (last-first) <= n
//!
//! @param n
//! Integer to partition.
//! @param first
//! Sequence first element iterator.
//! @param last
//! Sequence last element iterator.
template <typename Integer, typename Iterator>
void first_partition(Integer n, Iterator first, Iterator last)
{
    Iterator& a = first;
    Integer m = last-first;
    // Step 1 : initialize
    while (a != last-1)
        *a++ = 1;
    *a = n - m + 1;
}
//! Visit function pointer type alias.
template <typename Iterator>
using visit_func = void (*)(Iterator first, Iterator last);
//! Generates and visits all the sequence partitions.
//!
//! @param first
//! Sequence first element iterator.
//! @param last
//! Sequence last element iterator.
//! @param visit
//! Visit function pointer.
```

```
template <typename Iterator>
void visit_partitions(Iterator first, Iterator last,
    visit_func<Iterator> visit)
{
    do {
        // Step 2 : Visit
        visit(first, last);
    } while (next_partition(first, last));
}
```


3.3.4 Empirical results

In the experiment we've analyzed the partitioning time of an integer n in m parts, with $m \leq n$ and $n \leq 100$, using the provided implementation.

Variables

- n : positive integer to partition;
- m : number of parts;
- partitions : number of partitions;
- time : computation time in milliseconds.

Figure 5: partitions $=f(n, m)$, time $=g(n, m)$
The generation time is clearly linearly related to the number of partitions. This means that, once again, we are able to find a formula that allows us to estimate the generation time given the number of partitions.

$$
\text { time } \approx 0.0000476257 \cdot \text { partitions }+0.439574
$$

Looking at the graph we can deduce that the behaviour of both functions is very regular with respect to the number n. Follows the detail of how the partitions number changes for a fixed value n and in function to the number of parts m.

Figure 6: Partition results: partitions $=f(n=100, m)$

From the experimental results we can deduce that, for a fixed non negative integer n, the maximum number of partitions is given when the number of parts is approximately $m=0.2 \cdot n$.

3.4 Alternate Merge

This is a trivial algorithm used to merge two sequencies by alternating their elements. The only precondition of the algorithm is that the length of the second sequence is equal or one element less than the length of the former.

3.4.1 Algorithm

Given two sequencies $A \leftarrow\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B \leftarrow\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$, with $0 \leq n-m \leq 1$,
if $n=m$ then $\operatorname{AltMerge}(A, B)=\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{m}\right\}$
else if $n=m+1$ then $\operatorname{AltMerge}(A, B)=\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n-1}, b_{m}, a_{n}\right\}$

Figure 7: Alternate Merge

4 Lattice paths generation with a given number of turns

4.0.2 Definitions and theorems

In the Kuo [4] paper all the theorems are given " $a s$ - $i s$ " without any proof. Perhaps the choice is due to the fact that most of the proofs looks trivial,
however, we prefer to fill the gap and add an argument for each assertion.

Definition 1. Let t denote the number of turns of a path that has $t_{E} E$-turns and $t_{N} N$-turns, that is, $t=t_{E}+t_{N}$.

Lemma 1. $\left|t_{E}-t_{N}\right|=0$ or $\left|t_{E}-t_{N}\right|=1$
Proof.
All the possible paths from one point to the other are composed by sequences of N-steps and E-steps.

If a path starts with an E-step then it can terminate with an E-step or with a N-step. If it terminates with an E-step then, inside the path, for each N-turn there is exactly one E-turn to re-establish the E-direction, that is $\left|t_{E}-t_{N}\right|=0$. If it terminates with a N-step then, inside the path there must be an N-turn more, so we have $\left|t_{E}-t_{N}\right|=1$.

If a path starts with a N-step the argument is similar.

Lemma 2. If t is even $(2 k)$, then $t_{E}=t_{N}=k$. If t is odd $(2 k-1)$, then $t_{N}=k$ and $t_{E}=k-1$ when the first step is eastward, or $t_{E}=k$ and $t_{N}=k-1$ when the first step is northward.

Proof.
Using Lemma 1.
If t is even $(2 k)$, then it should be $\left|t_{E}-t_{N}\right|=0$, that imply $t_{E}=t_{N}=k$. This is the case that happens when the path ends with the same step as the first one.

If t is odd $(2 k-1)$, then, it should be $\left|t_{E}-t_{N}\right|=1$. If the first step is eastward the last step must be northward and there is an N-turn more, that is $t_{N}=k$ and $t_{E}=k-1\left(t_{N}-t_{E}=1\right)$.

If the first step is northward the argument is similar and $t_{E}=k$ and $t_{N}=$ $k-1\left(t_{E}-t_{N}=1\right)$.

Lemma 3. Given a path from $P_{0}=(0,0)$ to an arbitrary end point $P_{f}=$ $\left(n_{1}, n_{2}\right)$ then the path to reach $P_{f}^{\prime}=\left(n_{1}^{\prime}, n_{2}^{\prime}\right)=\left(n_{1}+1, n_{2}+1\right)$ adds at least one turn and a maximum of two turns to the previous path.

Proof.
The proof is given graphically.

Figure 8:

In Figure 8 is shown how a maximum of two turns can be added to move from $P_{f}=\left(n_{1}, n_{2}\right)$ to $P_{f}^{\prime}=\left(n_{1}^{\prime}, n_{2}^{\prime}\right)$. If the last step to arrive to P was a northward step then we can turn one time East and one time North. If the last step to arrive to P was an eastward step we follow a similar argument.

Lemma 4. For a $2 D$ rectangular lattice $L\left(n_{1}, n_{2}\right), n_{1}>0$ and $n_{2}>0$, assume that $n_{1} \leq n_{2}$, the minimum number of turns of a path is 1 and the maximum number of turns of a path is $2 n_{1}-1$ if $n_{1}=n_{2}$ or $2 n_{1}$ if $n_{1}<n_{2}$.

Proof.
The minimum number of turns t is trivially 1 so we concentrate with the maximum number of turns. The proof is by induction on the lattice size.

When $n_{1}=n_{2}$.
Base case. $n_{1}=n_{2}=1$ and $t=2 n_{1}-1=1$.
Inductive hypothesis: $n_{1}=n_{2}$ and $t_{\max }=2 n_{1}-1$.
Inductive step: $n_{1}^{\prime}=n_{2}^{\prime}=n_{1}+1$ and, for Lemma 3, the maximum number of turns $t^{\prime}=t+2$. That is $t^{\prime}=t+2=\left(2 n_{1}-1\right)+2=2 n_{1}+1=2\left(n_{1}+1\right)-1=$ $2 n_{1}-1$.

When $n_{1}<n_{2}$.
Base case: $n_{1}=1, n_{2}=k>1$, and $t=2 n_{1}=2$.
If the path starts in the eastward direction and has an N-turn before k then we have a maximum of two turns because an E-turn is required to reach the final position.

Figure 9:

Inductive hyphothesis: $n_{1}<n_{2}$ and $t=2 n_{1}$.
Inductive step: $n_{1}^{\prime}=n_{1}+1, n_{2}^{\prime}=n_{2}+1$ and, for Lemma 3, the maximum number of turns $t^{\prime}=t+2$. That is $t^{\prime}=t+2=2 n_{1}+2=2\left(n_{1}+1\right)=2 n_{1}^{\prime}$.

Theorem 1. Let $P\left(n_{1}, n_{2}, t\right)$ denote the number of paths with a given number of turns t, then

$$
P\left(n_{1}, n_{2}, t\right)= \begin{cases}\binom{n_{1}-1}{k} \cdot\binom{n_{2}-1}{k-1}+\binom{n_{2}-1}{k} \cdot\binom{n_{1}-1}{k-1} & t=2 k \\ 2 \cdot\binom{n_{1}-1}{k-1} \cdot\binom{n_{2}-1}{k-1} & t=2 k-1\end{cases}
$$

Proof.
$(t=2 k)$
In the identity (1), the first term of the sum stands for the number of paths starting with an east step, and the second term stands for the number of paths starting with a north step.

For a path with even turns, by Definition 1 and Lemma 2, we know that it must be composed of $k E$-turns and $k N$-turns. Thus, when the first step is eastward, what we need to do in the whole route is choose k points from $n_{1}-1$ points and choose $k-1$ points from $n_{2}-1$ points. When the first step is northward, what we need to do in the whole route is choose k points from $n_{2}-1$ points and choose $k-1$ points from $n_{1}-1$ points.

Since the first step is either eastward or northward, we have the first identity.
$(t=2 k-1)$
Similary, for a path with odd turns, by Definition 1 and Lemma 2, we know that it must be composed of $k E$-turns and $k-1 N$-turns when first step is northward, or that it must be composed of $k N$-turns and $k-1 E$-turns when first step is eastward, what we need to do in the whole path are choose $k-1$ points from $n_{1}-1$ points and choose $k-1$ points from $n_{2}-1$ points. Since the first step is either northward or eastward, we have the second identity.

4.1 Trivial approach

The straightforward way to generate all the paths from a point to another with a given number of turns is by using brute force.

4.1.1 Algorithm

All the paths from a point $P_{0}=(0,0)$ to a point $P_{f}=\left(n_{1}, n_{2}\right)$ are composed of $n_{1} E$-steps and $n_{2} N$-steps. The algorithm strategy is reduced to:

1. Generate all the possible paths, by generating all the permutations of the multiset $\left\{E^{n_{1}}, N^{n_{2}}\right\}$.
2. Select the paths with the given number of turns.

For example. If $P_{f}=(3,2)$, the paths are generated by considering all the permutations of the multiset $\left\{E^{3}, N^{2}\right\}$:

EEENN, EENEN, EENNE, ENEEN, ENENE,
ENNEE, NEEEN, NEENE,NENEE, NNEEE
And then selecting the paths with the given number of turns, e.g. 2:
EENNE, ENNEE, NEEEN

4.1.2 Analysis

Given the lattice $L\left(n_{1}, n_{2}\right)$, the algorithm overall complexity is strictly bound to the complexity of the generation of all permutations of the multiset $\left\{E^{n_{1}}, N^{n_{2}}\right\}$. The number of turns variable is not significative for the analysis, and this is because all the possible permutations are always generated and visited, at least, to perform the $n-1$ comparisons.

Theorem. The time complexity of a simple multiset permutation algorithm for generating two-item $\left\{E^{n_{1}}, N^{n_{2}}\right\}$ multiset permutations according to a given number of turns is $O\left(\frac{n^{n+1.5}}{n_{1}^{n_{1}+0.5} \times n_{2}^{n_{2}+0.5}}\right)$, here $n=n_{1}+n_{2}$; and in case $n_{1}=n_{2}$ the time complexity is $O\left(n^{0.5} 2^{n+1}\right)$.

Proof.

For a two-item multiset permutation, there are totally $\binom{n_{1}+n_{2}}{n_{1}}=\binom{n}{n_{1}}=\frac{n!}{n_{1}!n_{2}!}$ permutations. Even if we ignore the generation complexity of each permutation, each one of these needs $n-1$ comparisons to calculate how many turns it has (eg. this can be done in the Visit Step of the Permute Algorithm).

It is well known that the factorial function has exponential growth. By using Stirling approximation, $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$, we have:

$$
\frac{n!}{n_{1}!n_{2}!}=\frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{\sqrt{2 \pi n_{1}}\left(\frac{n_{1}}{e}\right)^{n_{1}} \sqrt{2 \pi n_{2}}\left(\frac{n_{2}}{e}\right)^{n_{2}}}=\sqrt{\frac{1}{2 \pi}} \frac{n^{n+0.5}}{n_{1}^{n_{1}+0.5}+n_{2}^{n_{2}+0.5}}
$$

then after multiplying the term by $n-1$ we have $O\left(\frac{n^{n+1.5}}{n_{1}^{n_{1}+0.5} \times n_{2}^{n_{2}+0.5}}\right)$. Moreover, in the case $n_{1}=n_{2}$ the time complexity is $O\left(n^{0.5} 2^{n+1}\right)$. In other words, the running time is exponential on the problem size n.

4.1.3 Implementation

The implementation directly uses the Permute algorithm with a Visit step implemented to perform the $n-1$ comparisons to check if the current permutation has the required number of turns.

```
template <typename Iterator>
void visit(const Iterator first, const Iterator last)
{
    int turns = 0;
    for (Iterator i = first; i != last-1; i++)
    {
            if (*i != *(i+1))
            turns++;
    }
    if (turns == required_turns)
        paths++;
    visits++;
}
```


4.1.4 Empirical results

Variables

- $n 1$: lattice destination point x-coordinate;
- n2 : lattice destination point y-coordinate;
- turns : number of turns;
- paths : number of paths with the given number of turns;
- visits : number of generated permutations; this is equal to the number of calls to the Visit Step;
- time : computation time in milliseconds;

Experiment 1. $2 \leq n_{1} \leq 15, n_{2}=n_{1}$

n1	n2	turns	paths	visits	time
2	2	2	2	6	0.004969
3	3	3	8	20	0.021282
4	4	4	18	70	0.090375
5	5	5	72	252	0.390691
6	6	6	200	924	1.71823
7	7	7	800	3432	7.17305
8	8	8	2450	12870	18.6175
9	9	9	9800	48620	43.3554
10	10	10	31752	184756	176.945
11	11	11	127008	705432	739.125
12	12	12	426888	2704156	3036.63
13	13	13	1707552	10400600	12550.7
14	14	14	5889312	40116600	51858.6
15	15	15	23557248	155117520	213612.

Table 2: Trivial approach results
The permutations numbers grows very fast, to allow a better view of the graph points the x and y axis values were logarithmically scaled.

Figure 10: Permute Results: paths $=f\left(n_{1}+n_{2}\right)$, visits $=g\left(n_{1}+n_{2}\right), n_{1}=n_{2}$

Figure 11: Permute Results: time $=f\left(n_{1}+n_{2}\right), n_{1}=n_{2}$

The time is approximately a linear function of the number of visits and paths. That is, given A, B, C, D real numbers

$$
\begin{aligned}
& \text { time } \approx A \cdot \text { paths }+B \\
& \text { time } \approx C \cdot \text { visits }+D
\end{aligned}
$$

Figure 12: time $=f($ paths $)$, time $=g($ visits $)$

With the above experimental results, we've found the following best fitting linear equations:

$$
\begin{aligned}
& \text { time } \approx 0.00906556 \cdot \text { paths }-415.267 \\
& \text { time } \approx 0.00137428 \cdot \text { visits }-398.835
\end{aligned}
$$

This also means that the visits and the paths found are linearly related. And in this case the equation is

$$
\text { paths }=0.15159 \cdot \text { visits }+1860.29
$$

When $n_{1}=n_{2}=$ turns, approximatelly only the 15% of our visits, and consequently of the computation time, is really usefull for the final result.

Experiment 2. $2 \leq n_{1} \leq 15,2 \leq n_{2} \leq 15$
The results table is not reported here for space reasons, anyway from the graph plot we can clearly see the exponential growth bound to the value of n_{1} and n_{2}.

Figure 13: visits $=f\left(n_{1}, n_{2}\right)$, time $=g\left(n_{1}, n_{2}\right)$
Again, from the experiments the time is clearly a linear function of the number of visits (and paths).

Figure 14: time $=h($ visits $)$
By using the same best fitting technique used by the $n_{1}=n_{2}$ case, we reach to the following linear equation:

$$
\text { time } \approx 0.00134622 \cdot \text { visits }-166.451
$$

The result can be assumed to be compatible with the previous interpolation.

4.2 G2DLP

The G2DLP algorithm has been proposed by Kuo [4] and is the argument at the center of this paper. In his article Kuo asserts that the algorithm is linear in time. Unfortunately, it is not very clear on what is linear and in function of what. In this discussion we will show that, if the dependent variable is the algorithm running time, then the only linearly related variable is the number of paths. Moreover, given a $2 D$ lattice of arbitrary size, we will extrapolate a running time value approximation that gives us an idea of the problem complexity.

The experimental results allows a direct comparison against the trivial approach, and this will clearly shows how the algorithm significantly reduces the
time complexity in the generation of all the paths from a point to another with a given number of turns, even in the worst case.

The algorithm borrows the Permute, Partition and AltMerge algorithms.

4.2.1 Algorithm

To construct all the paths from the point $P_{0}=(0,0)$ to the point $P_{f}=\left(n_{1}, n_{2}\right)$ with a given number of turns, the strategy is to divide the x and y axis into blocks (or parts) of E-steps and N-steps using the following rules:

- [Partition] Generate every n_{1} and n_{2} partition
- If the number of turns is even $(t=2 k)$

1. When the first step is eastward there will be $k E$-turns, $k N$ turns, $k+1 E$-blocks and $k N$-blocks. Partition n_{1} into $k+1$ parts, parts A, and n_{2} in k parts, parts ${ }_{B}$.
2. When the first step is northward there will be $k E$-turns, $k N$ turns, $k E$-blocks and $k+1 N$-blocks. Partition n_{2} in $k+1$ parts, parts $_{C}$, and n_{1} in k parts, parts ${ }_{D}$.

- If the number of turns is odd $(t=2 k-1)$

1. When the first step is eastward there will be $k-1 E$-turns, k N-turns, $k E$-blocks and $k N$-blocks. Partition both n_{1} and n_{2} in k parts, parts $_{A}$ and parts ${ }_{B}$.
2. When the first step is northward there will be $k E$-turns and $k-1 N$-turns, $k E$-blocks and $k N$-blocks. Partition both n_{1} and n_{2} in k parts, parts S_{C} and parts ${ }_{D}$.

- [Permute] For each X in $\{A, B, C, D\}$, generate all the permutations of parts X_{X} and store the results in perms ${ }_{X}$ list.
- [Merge] Alternate merge every element of perms $_{A}$ with every element of perms s_{B} and every element of perms S_{C} with every element of perms s_{D} to get all the possible paths from P_{0} to P_{f} with the given number of turns.

Example. Generation of the set of all paths from the point $P_{0}=(0,0)$ to $P_{f}=\left(n_{1}=4, n_{2}=3\right)$ with 4 (even) turns.

Generate all the paths starting with an E-step.
parts $_{A}=\operatorname{Partition}\left(n_{1}=4, k=3\right)=\{112\}$
perms $_{A}=\operatorname{Permute}\left(\right.$ parts $\left._{A}\right)=\{112,121,211\}$
steps $_{A}=\operatorname{ToSteps}\left(\right.$ perms $\left._{A}, E\right)=\{\langle E, E, E E\rangle,\langle E, E E, E\rangle,\langle E E, E, E\rangle\}$
parts $_{B}=\operatorname{Partition}\left(n_{2}=3, k=2\right)=\{12\}$
perms $_{B}=$ Permute $\left(\right.$ parts $\left._{B}\right)=\{12,21\}$
steps $_{B}=$ ToSteps $\left(\right.$ perms $\left._{B}, N\right)=\{\langle N, N N\rangle,\langle N N, N\rangle\}$
paths $_{E}=$ AltMerge $\left(\right.$ steps $_{A}$, steps $\left._{B}\right)=$
$\{\langle E N E N N E E\rangle,\langle E N N E N E E\rangle,\langle E N E E N N E\rangle\}$
$\{\langle E N N E E N E\rangle,\langle E E N E N N E\rangle,\langle E E N N E N E\rangle\}$
Generate all the paths starting with an N-step.
parts $_{C}=\operatorname{Partition}\left(n_{2}=3, k=3\right)=\{111\}$
perms $_{C}=$ Permute $\left(\right.$ parts $\left._{C}\right)=\{111\}$
steps $_{C}=$ ToSteps $\left(\right.$ perms $\left._{C}, N\right)=\{\langle N, N, N\rangle\}$
$\operatorname{parts}_{D}=\operatorname{Partition}\left(n_{1}=4, k=2\right)=\{13,22\}$
perm $_{D}=$ Permute $\left(\right.$ parts $\left._{D}\right)=\{13,31,22\}$
steps $_{D}=$ ToSteps $\left(\right.$ perm $\left._{D}, E\right)=\{\langle E, E E E\rangle,\langle E E E, E\rangle,\langle E E, E E\rangle\}$
paths $_{N}=$ AltMerge $\left(\right.$ steps $_{C}$, steps $\left._{D}\right)=$
$\{\langle N E N E E E\rangle,\langle N E E E N E\rangle,\langle N E E N E E\rangle\}$
Add the paths to obtain all the possible paths with 4 turns from $P_{0}=(0,0)$ to $P_{f}=(4,3)$.
paths $=$ path $_{E} \cup$ paths $_{N}$

Figure 15:
In Figure 15 one path from the above example, in particular the path $\langle E N E N N E E\rangle$.

4.2.2 Analysis

Theoretically, once we found the sets perms $A_{A, B, C, D}$ the problem can be declared as solved, but in practice we want to finish the paths generation process. This is where the algorithm bottleneck is, we need to compute the cartesian products perms $_{A} \times$ perms $_{B}$ and perms ${ }_{C} \times$ perms $_{D}$ and this operation complexity is clearly bound to the sets number of elements, and this number is linked with the number of turns.

Theorem 1 states that given a lattice $L\left(n_{1}, n_{2}\right)$, the number of paths with a given number of turns $t, P\left(n_{1}, n_{2}, t\right)$, is $P\left(n_{1}, n_{2}, 2 k\right)=\binom{n_{1}-1}{k} \cdot\binom{n_{2}-1}{k-1}+\binom{n_{2}-1}{k}$. $\binom{n_{1}-1}{k-1}$ when t is even and $P\left(n_{1}, n_{2}, 2 k-1\right)=2 \cdot\binom{n_{1}-1}{k-1} \cdot\binom{n_{2}-1}{k-1}$, when t is odd.

Suppose that the number of turns is even $(2 k)$. When the first step is eastward the number of different E-steps permutations, $\left|\operatorname{perms}_{A}\right|$, is $\binom{n_{1}-1}{k}$ and the number of different N-steps permutations, $\left|\operatorname{perms}_{B}\right|$, is $\binom{n_{2}-1}{k-1}$. When the
first step is northward the number of different E-steps permutations, $\left|p e r m s_{C}\right|$, is $\binom{n_{1}-1}{k-1}$ and the number of different N-steps permutations, \mid perms ${ }_{D} \mid$, is $\binom{n_{2}-1}{k}$.

Suppose that the number of turns is odd $(2 k-1)$. No matter if the first step is eastward or northward, the number of different E-steps permutations, \mid perms $A_{A} \mid$ and $\left|\operatorname{perms}_{D}\right|$, is $\binom{n_{1}-1}{k-1}$ and the number of different N-steps permutations, \mid perms $_{B} \mid$ and \mid perms $_{C} \mid$, is $\binom{n_{2}-1}{k-1}$.

Using the Stirling approximation, $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$, we can be confident that, for a fixed a number of turns, the Theorem 1 formula generally grows exponentially with respect to n_{1} and n_{2}, with the following few borderline cases exception:

- turns $=2 k-1=1$

The number of paths is constant and equal to 2 .
$P\left(n_{1}, n_{2}, t=2 k-1=1\right)=2 \cdot\binom{n_{1}-1}{0} \cdot\binom{n_{2}-1}{0}=2$

- turns $=2 k=2$

The number of paths is a linear function of n_{1} and n_{2}.

$$
P\left(n_{1}, n_{2}, t=2 k\right)=\binom{n_{1}-1}{1} \cdot\binom{n_{2}-1}{0}+\binom{n_{2}-1}{1} \cdot\binom{n_{1}-1}{0}=n_{1}+n_{2}-2
$$

- turns $=2 k-1=2 n_{1}-1, n_{1}=n_{2}$

The number of paths is constant and equal to 2 .
$P\left(n_{1}, n_{2}, t=2 k-1=2 n_{1}-1\right)=2 \cdot\binom{n_{1}-1}{n_{1}-1} \cdot\binom{n_{2}-1}{n_{2}-1}=2$

- turns $=2 k=2 n_{1}-2, n_{1}=n_{2}$

The number of paths is a linear function of n_{1} and n_{2}.

$$
P\left(n_{1}, n_{2}, t=2 k=2 n_{1}-2\right)=\binom{n_{1}-1}{n_{1}-1} \cdot\binom{n_{2}-1}{n_{2}-2}+\binom{n_{2}-1}{n_{2}-1} \cdot\binom{n_{1}-1}{n_{1}-1}=n_{1}+n_{2}-2
$$

It is worth noting that the exponential complexity of such a problem is not linked with the algorithm but is strictly bound to the problem solution, that is, if the number of paths with a given number of turns are an exponential function of the lattice size then the algorithm that generates such paths should be exponential.

Worst case. Given a lattice $L\left(n_{1}, n_{2}\right)$, the problem worst case, that is the one that generates the bigger number of paths, is obtained by finding the maximum for the Theorem 1 formula in function of the number of turns. The exact problem solution can be reconducted to the maximization of a function of the form $h(k)=\binom{n_{1}}{k} \cdot\binom{n_{2}}{k}$, for two fixed non negative integers n_{1} and n_{2} and a non negative integer k, with $0 \leq k \leq \min \left(n_{1}, n_{2}\right)$.

That value can be proven to be $k=\left\lceil\frac{n_{1} n_{2}-1}{n_{1}+n_{2}+2}\right\rceil$
Proof.
We have that $k(k)<h(k+1)$ if

$$
\binom{n_{1}}{k} \cdot\binom{n_{2}}{k}<\binom{n_{1}}{k+1} \cdot\binom{n_{2}}{k+1}
$$

That is if

$$
\frac{n_{1}!}{k!\left(n_{1}-k\right)!} \frac{n_{2}!}{k!\left(n_{2}-k\right)!}<\frac{n_{1}!}{(k+1)!\left(n_{1}-k-1\right)!} \frac{n_{2}!}{(k+1)!\left(n_{2}-k-1\right)!}
$$

Equivalent to

$$
(k+1)!(k+1)!\left(n_{1}-k-1\right)!\left(n_{2}-k-1\right)!<k!k!\left(n_{1}-k\right)!\left(n_{2}-k\right)!
$$

And simplifying

$$
(k+1)^{2}<\left(n_{1}-k\right)\left(n_{2}-k\right)
$$

That is true for

$$
k<\frac{n_{1} n_{2}-1}{n_{1}+n_{2}+2}
$$

So the maximum is reached for the value immediately following that bound, that is for $k=\left\lceil\frac{n_{1} n_{2}-1}{n_{1}+n_{2}+2}\right\rceil$.

Further analysis. Can be interesting understand how the numbers from the partitioning and permutation algorithms relates to and the G2DLP ones.

Given a lattice $L\left(n_{1}, n_{2}\right)$, the number of paths from $P_{0}=(0,0)$ to $P_{f}=$ $\left(n_{1}, n_{2}\right)$ in function of the number of turns t graph is in general a bell shaped graph as a direct consequence of the binomial coefficients in the Theorem 1 formula.

Figure 16: $\operatorname{paths}\left(n_{1}, n_{2}, t\right)$

To understand how the partitioning algorithm, whose complexity function $p(n, t)$ graph looks like a binomial distribution with $p \approx 0.2$ (skewed to the right), can be part of an algorithm which resulting paths numbers distributes like a
binomial coefficient we must apply the permutation algorithm to the sequences generated by the partitioning function. Indeed, It has been empirically observed that if we partition a fixed number n into m parts, and then we permute each obtained sequence, then the number of such permutations graph has a perfect bell shape.

In short, if $p(n, m)$ is the function counting the number of partitions of an integer n with a given number of parts m, then there exists a function f and two non negative natural numbers a and b such that

$$
f(p(n, m))=\binom{a}{b}
$$

Follows an experiment with $n=30$ and $1 \leq m \leq n$.

Figure 17: $p(n, m)$ and $f(p(n, m))$

m	$\mathrm{p}(30, \mathrm{~m})$	$\mathrm{f}(\mathrm{p}(30, \mathrm{~m})$)	m	$\mathrm{p}(30, \mathrm{~m})$	$\mathrm{f}(\mathrm{p}(30, \mathrm{~m})$)
1	1	1	30	1	1
2	15	29	29	1	29
3	75	406	28	2	406
4	206	3654	27	3	3654
5	377	23751	26	5	23751
6	532	118755	25	7	118755
7	618	475020	24	11	475020
8	638	1560780	23	15	1560780
9	598	4292145	22	22	4292145
10	530	10015005	21	30	10015005
11	445	20030010	20	42	20030010
12	366	34597290	19	56	34597290
13	290	51895935	18	77	51895935
14	229	67863915	17	101	67863915
15	176	77558760	16	135	77558760

Table 3:

4.2.3 Implementation

In this implementation the fixed width partitions are generated via the Partition algorithm and each one is permuted using the Permute algorithm.

At the end the paths are generated using a function that performs the ToSteps and AltMerge algorithms.

```
//! Partitions list type alias
using parts_list = vector<vector<int>>;
//! Generates all the partitions permutations
//! @param n
//! Integer value to partition.
//! @param m
//! Partition sequence length.
//! @param parts
//! Output partitions list.
static void partition(int n, int m, parts_list &parts)
{
    vector<int> a(m); // Working sequence
    first_partition(n, a.begin(), a.end());
    do {
        do {
            parts.push_back(vector<int>(a)); // Copy
        } while (next_permute(a.begin(), a.end()));
    } while (next_partition(a.begin(), a.end()));
}
//! Alternate merge the two partition lists
//! @param step1
            Step type contained in the parts1 list
//! @ Step type
//! Step type contained in the parts2 list
//! @param parts1
//! First partition list.
//! @param parts1
//! Second partition list.
static void altmerge(char step1, char step2,
    parts_list &parts1, parts_list &parts2)
{
    for (auto p1 = parts1.begin(); p1 != parts1.end(); p1++)
    {
        for (auto p2 = parts2.begin(); p2 != parts2.end(); p2++)
        {
            string s;
            for (unsigned i = 0; i < p1->size()+p2->size(); i++)
            {
                auto q = i/2;
                if (i % 2 == 0)
                    for (auto j = 0; j < (*p1)[q]; j++)
                    s += step1;
                    else
                        for (auto j = 0; j < (*p2)[q]; j++)
                s += step2;
            }
            cout << s << endl;
```

```
        }
    }
}
//! G2DLP Algorithm as described by Kuo.
//! @param n1
//! Lattice x-axis dimension.
//! @param n2
//! Lattice y-axis dimension.
//! @param turns
//! Number of turns.
void g2dlp(int n1, int n2, int turns)
{
    int k = (turns+1)/2;
    parts_list parts_a, parts_b, parts_c, parts_d;
    if (turns % 2 == 0)
    {
        // First step is Eastward
        partition(n1, k+1, parts_a);
        partition(n2, k, parts_b);
        // First step is Northward
        partition(n2, k+1, parts_c);
        partition(n1, k, parts_d);
    }
    else
    {
        // First step is Eastward
        partition(n1, k, parts_a);
        partition(n2, k, parts_b);
        // First step is Northward
        parts_c = parts_b;
        parts_d = parts_a;
    }
    altmerge('E', 'N', parts_a, parts_b);
    altmerge('N', 'E', parts_c, parts_d);
}
```


4.2.4 Empirical results

Variables

- $n 1$: lattice horizontal dimension;
- n2 : lattice vertical dimension;
- turns : number of turns;
- paths : number of paths with a given number of turns;
- time : computation time in milliseconds.

Experiment 1. $2 \leq n_{1} \leq 15, n_{2}=n_{1}=t$. Table 4 resumes the experimental results for the G2DLP algorithm with $n_{1}=n_{2}$ and with a number of turns equal to one of the dimensions.

Unlike the trivial approach, the number of turns is important for the result, and in this experiment we are going to set turns $=n_{1}$ with the effect to evaluate the worst case, that is the one that generates the maximum number of paths.

n1	n2	turns	paths	g2dlptime	brutetime
2	2	2	2	0.014685	0.004969
3	3	3	8	0.03006	0.021282
4	4	4	18	0.046747	0.090375
5	5	5	72	0.129795	0.390691
6	6	6	200	0.35597	1.71823
7	7	7	800	1.45058	7.17305
8	8	8	2450	4.47957	18.6175
9	9	9	9800	8.32935	43.3554
10	10	10	31752	24.2522	176.945
11	11	11	127008	102.117	739.125
12	12	12	426888	371.213	3036.63
13	13	13	1707552	1602.57	12550.7
14	14	14	5889312	5992.7	51858.6
15	15	15	23557248	25269.	213612.

Table 4: G2DLP results, $n 1=n 2=t$

The results numbers grows very fast, to allow a better view of the graph the x and y axis were logarithmically scaled.

Figure 18: paths $=f\left(n_{1}+n_{2}, t=n_{1}\right)$, time $=g\left(n_{1}+n_{2}, t=n_{1}\right)$

Figure 19: time $=h($ paths $)$
Table 4 also compares the G2DLP algorithm numbers with the the trivial ones. From the results is evident that the former increases the overall performances in the generation of the lattice paths with a given number of turns even in the worst case ($n_{1}=n_{2}=t$), anyway the algorithm is still exponential in complexity and not linear as the author asserts.

Figure 20 shows how, for two fixed values n_{1} and n_{2}, the running time is bound to the number of generated paths and how these are distributed with respect to the number of turns t. Clearly the maximum number of paths, and so the generation time, is given for $t=n_{1}=n_{2}$. This result is coherent with the Theorem 1 and the algorithm theoretical analysis.

Figure 20: paths $=f($ turns $)$, time $=g($ turns $), n_{1}=n_{2}=15$

Using the experimental results from the G2DLP worse case $n_{1}=n_{2}=t$, the following linear relationships are found

$$
\begin{aligned}
& \text { time }_{\text {g2dlp }} \approx 0.00107114 \cdot \text { paths }-45.3796 \\
& \text { time }_{\text {trivial }} \approx 0.00906556 \cdot \text { paths }-415.267
\end{aligned}
$$

With a limit of the ratio time $_{\text {trivial }} /$ time $_{g 2 d l p} \approx 8.46347$, meaning that, in the worst case, the G2DLP algorithm is still ~ 8.5 times faster than the trivial approach.

Is worth noting that this ratio grows exponentially while the number of turns moves away from the lattice dimensions.

Experiment 2. $2 \leq n_{1} \leq 15,2 \leq n_{2} \leq 15$ The results table is not reported here for space reasons, anyway from the graphs we can clearly see the exponential growth linked to the value of n_{1} and n_{2}.

Figure 21: paths $=f(n 1, n 2, t=4)$, time $=g(n 1, n 2, t=4)$

Figure 22: time $=h($ paths,$t=4)$

Figure 23: paths $=f(n 1, n 2, t=8)$, time $=g(n 1, n 2, t=8)$

Figure 24: time $=h($ paths,$t=8)$

Figure 25: paths $=f(n 1, n 2, t=15)$, time $=g(n 1, n 2, t=15)$

Figure 26: time $=h($ paths,$t=15)$

Figure 27: paths $=f(n 1, n 2, t=20)$, time $=g(n 1, n 2, t=20)$

Figure 28: time $=h($ paths,$t=20)$

4.3 Applications

4.3.1 Cryptography

The application has been presented by Kuo [1] in its paper. Here we are going to revisit the application with some improvements, especially related to the application of the theoretical results to an effective and usable implementation.

The proposed application combines a substitution cipher system with the $G 2 D L P$ algorithm to become a product cipher system.

Given an ordered set of symbols $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and a one-to-one function $f: A \rightarrow \mathbb{N}$, we shuffle the set A by selecting one of its $|A|$! permutations, for example by using an unranking algorithm proposed by Myrvold and Ruskey [7]. The cleartext is then processed by substituting each symbol a_{i} with the positionally correspondent symbol found in the selected permutation of A, this produces the ciphertext.

Example. If $A=\{x, y, z, w\}$ and $\operatorname{Permute}(A)=\{w, z, y, x\}$. Then, the cleartext $x x z w w w w z y$ is translated into $w w y x x x x y z$.

Next, we process the ciphertext using the G2DLP algorithm to produce the final result.

Let $L\left(n_{1}, n_{2}\right)$ be a $2 D$ lattice. If $M=\max [f(A)]$ and $k=\left\lfloor\frac{M+1}{2}\right\rfloor$ then, to be sure that the G2DLP algorithm produces at least one path for each symbol a_{i}, it should be $\left(k<n_{1}\right) \wedge\left(k \leq n_{2}\right)$ or $\left(k \leq n_{1}\right) \wedge\left(k<n_{2}\right)^{3}$.

Each input symbol a_{i} is encoded as a bit string of length $n_{1}+n_{2}$ representing one of the possible lattice paths from $P_{0}=(0,0)$ to $P_{f}=\left(n_{1}, n_{2}\right)$ with a number of turns equal to $f\left(a_{i}\right)$. Each E-step the path is encoded with a 0 (or a 1) and each N-step is encoded with the complementary value 1 (or 0). Which path to use from the possible ones is randomly selected each time the symbol a_{i} is processed.

Example. If $L(3,3)$ and $A=\{x=1, y=2, z=3, w=4\}$ then the following 6 bits strings can be used to encode each symbol
$f(x)=1 \Rightarrow$ select from $\{000111,111000\}$
$f(y)=2 \Rightarrow$ select from $\{011100,001110,100011,110001\}$
$f(z)=3 \Rightarrow$ select from $\{010011,011001,001011,001101,101100$ 100110, 110100, 110010\}
$f(w)=4 \Rightarrow$ select from $\{010110,011010,101001,100101\}$
The input string is then each time encrypted in a different way. The reverse process, from a ciphertext to a cleartext, is always possible if we know the values of n_{1}, n_{2} and the substitution permutation.

To achieve a more effective result the lattice size can be arbitrary increased (only limited by the computing power of the machine), with the consequence to increment the number of possible paths, eg. if $f\left(a_{i}\right)=13$ and the lattice size is 13×13 then each instance of the symbol a_{i} can be encoded as one of the 1707552 possible 26 bits strings.

Implementation notes.

It was already proven that the complexity of the G2DLP algorithm is exponential. As an implementation note, is suggested to skip the AltMerge phase and select rendomly the paths directly from the vectors containing the separated E-steps and N-steps. This optimization skips all the cartesian product phase of the algorithm, that is indeed the most

Another observation can be made regarding the algorithm encoded data overhead. Assuming that what we want to transmit a sequence of bytes, then the symbols set cardinality is 256 and the simplest associated integer mapping function is $f: A \rightarrow[1: 256]$. Since $\max [f(A)]=256$ then $k=128$ and the lattice minimum dimensions are 129×128 or 128×129. Such a lattice is useless for the majority number of turns:
$>$ turns: 1 , paths: 2 , time: 0.023300
$>$ turns: 2, paths: 255, time: 1.123182

[^2]$>$ turns: 3, paths: 32512, time: 31.987583
$>$ turns: 4, paths: 2056384, time: 1099.612278
$>$ turns: 5 , paths: 130064256 , time: 62135.459239
...practically useless zone...
$>$ turns: 253, paths: 2064512, time: 13592.381973
> turns: 254, paths: 24384, time: 179.455214
$>$ turns: 255, paths: 256, time: 2.084976
> turns: 256, paths: 1, time: 0.032493
The worst case is given for $k \approx\left\lceil\frac{n_{1} n_{2}-1}{n_{1}+n_{2}+2}\right\rceil=64$.
$$
P\left(n_{1}=128, n_{2}=129, t=2 k=128\right)=5.69245 \cdot 10^{74}
$$

Just to have an idea of what we are talking about, if we use the interpolated linear function to get an extimated computation time we have

$$
\begin{aligned}
\text { time } & \approx 0.00107114 \cdot 5.69245 \cdot 10^{74}-45.3796 \mathrm{~ms}= \\
& =6.09741 \cdot 10^{71} \mathrm{~ms}=1.93348 \cdot 10^{61} \text { years }
\end{aligned}
$$

So ridiculously large numbers that are comparable with a googol $\left(10^{100}\right)$.
Such an algorithm is realistically usable to encode just alphabets with a limited number of symbols, such as the 26 English letters and by using lookup tables.

4.3.2 Probability and game theory

Mohanty [5] proposed the following game. Take two coins 1 and 2 with probabilities p_{1} and p_{2} of obtaining heads, respectively. The rules of the game are:

1. start with a coin $i, i=1,2$;
2. if the last trial was a tail, then make the next trial with coin 1 , otherwise with coin 2 ;
3. stop making further trials when for the first time the total number of heads exceeds μ times the total number of tails by exactly a, with a fixed $a>0$.

The question is: provided the game was started by tossing coin $i, i=1$ or 2 , what is the distribution of the duration of the game?

It is an easy observation that any game can be represented in terms of a lattice path, by starting in $(0,0)$ and proceding with an E-step if tail (T) was tossed and by an N-step if head (H) was tossed. If n and h are the current number of tails and heads, respectivelly, then the game continues while $h<\mu n+a$.

Thus, the game THHHTHTHHHH (which is a game for $\mu=2$ and $a=2$) would be represented by the lattice path P in Figure 29.

Figure 29: Dices Game
The probability of a game of length $n+h=n+\mu n+a=(\mu+1) n+a(n$ tails and $h=\mu n+a$ heads) is given as follows.

If the first toss was with coin 1 , then the probability of a game, corresponding to a path P as described above, is

$$
p_{1}^{k+1}\left(1-p_{1}\right)^{n-k} p_{2}^{\mu n+a-k-1}\left(1-p_{2}\right)^{k}
$$

where k denotes the number of E-turns of the path.
On the other hand, if the first toss was with coin 2, then the probability of a game, corresponding to path P, is

$$
p_{1}^{k+1}\left(1-p_{1}\right)^{n-k-1} p_{2}^{\mu n+a-k-1}\left(1-p_{2}\right)^{k+1}
$$

if the first toss resulted in tail, and

$$
p_{1}^{k}\left(1-p_{1}\right)^{n-k} p_{2}^{\mu n+a-k}\left(1-p_{2}\right)^{k}
$$

if the first toss resulted in head, respectively.
Therefore, to determine the probability of games of length $(\mu+1) n+a$, we need to enumerate lattice paths from $(0,0)$ to $(n, \mu n+a-1)$ staying below the line $y=\mu x+a-1$, being allowed to touch it, which have a given number of E-turns.

To solve problems such as the one proposed it is sufficient to concentrate on the enumeration of lattice paths with a given starting and end points, satisfying certain restrictions, and with a given number of turns.

The game has been faced, along with some other interesting problems involving lattice paths enumeration with respect to their number of turns, by Krattenthaler [3].

References

[1] D. E. Knuth. The art of computer programming, generating all paritions. Volume 4, Fascicle 3, 2005.
[2] D. E. Knuth. The art of computer programming, generating all tuples and permutations. Volume 4, Fascicle 2, 2005.
[3] C. Krattenthale. The enumeration of lattice paths with respect to their number of turns. 1997.
[4] T. Kuo. From enumerating to generating: A linear time algorithm for generating 2d lattice paths with a given number of turns. May 2015. 190-208.
[5] G. Mohanty. Lattice path counting and applications. January 1979.
[6] R. P. Stanley. Enumerative combinatorics, second edition. July 2011.
[7] F. Ruskey W. Myrvold. Ranking and unranking permutations in linear times. April 2000.
[8] H. S. Wilf. Lectures on integer partitions. July 2000.

[^0]: ${ }^{1}$ An equivalent implementation of this algorithm is used by the ISO C ++ Standard Library

[^1]: ${ }^{2} \mathrm{An}$ implementation is provided with the companion sources

[^2]: ${ }^{3}$ These values are extracted from the G2DLP algorithm preconditions in case of an even number of turns

