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Abstract. We discuss an algorithm to generate efficiently all the paths of a
two-dimensional lattice with a given number of turns. The algorithm was
first proposed by Kuo [4] and in this paper we will go further with an
in depth complexity analysis, implementation and experimental results.
The algorithm performances are then compared against a naive generation
approach. Finally two potential applications of such kind of counting
techniques are presented. The discussed algorithms are all accompained
by a modern and reusable C++ implementation.

Keywords: multiset, multiset permutation, lexicographic order, colexicographic
order, integer partition, lattice, lattice path, turns.

1 Introduction
Given a 2D point lattice, i.e. a grid of points, in this work we will study
an efficient way to generate all the paths between two arbitrary points with
a given number of turns, that is the paths where the direction of the path
changes a given number of times. In litterature, there are plenty of algorithms
and theoretical results about lattice paths generation, but not too many that
restrict the enumeration to the paths with a given number of turns.

The motivations to be interested in such counting problems touch a very dif-
ferent set of disciplines such as probability, statistics, cryptography, scheduling,
commutative algebra, etc.

The problem of turn enumeration of lattice paths was attacked in many
different ways. However there is a uniform approach which is able to handle
all these problems, which is by encoding paths in terms of two-rowed arrays.
Actually this is the way in which Narayana, who probably was the first to count
paths with respect to their turns, used to see turn enumeration problems.

This study goes from a fairly rigorous complexity analysis to experimenta-
tion.

Experimental notes

All the source code used for the empirical results has been implemented in C++
and all the tests were run on an Intel Core i7 CPU Q 720 @ 1.6 GHz PC.

The sources were compiled using the GNU g++ compiler without any opti-
mization. This choice is due to the fact that compiler optimizations can heavily
alter the program flow and logic from the original implementation, for exam-
ple with loops unrolling, special machine instructions, branch prediction, etc.
We’ve preferred extract our conclusions from the plain algorithms implementa-
tion that are more faithful to the theoretic descriptions. With this approach,
the experimental results are also more easily comparable with other implemen-
tations that use a different programming language or for tests over different
machine architectures.

The experimental results were post-processed through the Wolfram Mathe-
matica ® software to produce graphs, tables and linear functions interpolations.
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Some linear functions resulting from the experimental data interpolation
have an intercept that is less than zero where the interpolated data is always
greather than, or equal, to zero. This is mainly caused by the smaller results
values disturbing the interpolation algorithm. In general, algorithm benchmark-
ing is not very accurate for short time intervals and small quantities and this is
especially true when the performance tests are executed under a multithreaded
preemptive enviroment with caches, mmu and virtual memory (e.g. home PC).
Under these conditions a bit of randomnes is tipically introduced and an algo-
rithm execution tend to give more stable results for bigger data values and time
intervals. Indeed, for big values, the given equations are fairly accurate.

2 Prerequisites and Definitions
Multiset. A multiset is the generalization of the concept of a set that, unlike
a set, allows multiple instances of the elements. The multiplicity of an element
is the number of instances of that element in a specific multiset.

For example, an infinite number of multisets exists which contain elements
a and b, varying only by multiplicity.
{a, b} , {a, a, b} =

{
a2, b

}
, {a, a, a, b, b, b, b} =

{
a3, b4

}
, . . . , {am1bm2}

Multiset permutation. IfM is a finite multiset, then a multiset permutation
is an ordered arrangement of elements of M in which each element appears
exactly as often as its multiplicity in M .

An anagram of a word having some repeated letters is an example of a
multiset permutation.

If the multiplicities of M are m1, . . . ,mk and their sum is n then the num-
ber of the multiset permutations is given by

(
n

m1...mk

)
that is the multinomial

coefficient.

Lexicographic order. Given two partially ordered sets A and B, the lexico-
graphical order on the cartesian product A × B is defined as (a, b) ≤ (a′b′) if
and only if

(
a < a

′
)
∨
(
a = a

′ ∧ b ≤ b′
)
. The result is a partial order.

The definition can be extended to cartesian products of arbitrary length by
recursively apply the definition, i.e., by observing that A×B×C = A×(B × C)
.

When applied to digit permutations, lexicographic order is an increasing
numerical order.

For example, the permutations of {1, 2, 3} in lexicographic order are
123, 132, 213, 231, 312, 321.

Colexicographic order. Given two partially ordered sets A and B, the colex-
icographical order on the cartesian product A×B is defined as (a, b) ≤ (a′b′) if
and only if

(
b < b

′
)
∨
(
b = b

′ ∧ a ≤ a′
)
. The result is a partial order.
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As with colexicontraphic order, the definition can be extended to cartesian
products of arbitraty length.

For example, the permutations of {1, 2, 3} in colexicographic order are
321, 231, 312, 132, 213, 123.

Integer partition. Given a non a non negative integer n, a partition can
be defined as a sequence of non negative integers a1 ≥ a2 ≥ . . . such that
n = a1 + a2 + . . ..

For example, one partition of the integer 7 is a1 = 3, a2 = 3, a3 = 1, a4 =
a5 = . . . = 0.

The non zero terms are called parts and the zero terms are usually sup-
pressed.

Two sums that differ only for the order of their summands are considered
the same partition, so the order does not matter.

For example, the integer n = 4 can be partitioned in five distinct ways
4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Lattice. A point lattice is a regularly spaced array of points. Unless otherwise
specified, point lattices may be taken to refer to points in a square array, i.e.
points with coordinates (n1, n2, . . .), where n1, n2, . . . are integers. Such an array
is often called a grid or a mesh and is indicated as L(n1, n2, . . .).

Point lattices are frequently simply called lattices, which unfortunately con-
flicts with the same term applied to ordered sets treated in lattice theory. In
this study we will use the word lattice to refer to a point lattice.

For our scopes we will consider just 2D lattices, L(n1, n2), which denotes an
integer rectangular lattice that has an horizontal x-axis and a vertical y-axis.

An in-depth description about lattice theory can be found in Stanley [6].

Lattice path. A path is composed of connected horizontal and vertical line
segments, each passing between adjacent lattice points. A lattice path is there-
fore a sequence of points P0 . . . Pn with n ≥ 0 such that Pi is a lattice point
and Pi+1 is obtained by offsetting one unit East (or West) or one unit North
(or South).

When the path steps are restricted to just East (E-steps) and North (N -
steps) then the path length from the origin P0 = (0, 0) to a point Pf = (a, b)
is a+ b. The set of all these paths is then given by all the permutations of the
multiset

{
Na, Eb

}
, that is all the combinations of a sequence of a N -steps and

b E-steps, and there are
(
a+b
a

)
different paths.

Turning points. A point in a path P which is the end point of a North step
and at the same time the starting point of an East step is called a North-East
turn (NE-turn) of the path. Similarly, a point in the path P which is the end
point of a East step and at the same time the starting point of a North step
is called an East-North turn (EN -turn for short) of the path. In this paper
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the steps set is restricted to E-steps and N -steps so, for brevity, we will call
EN -turns just N -turns and NE-turns just E-turns.

Figure 1: Turning Points

Figure 1 illustrates a possible path from the point P0 = (0, 0) to the point
Pf = (6, 5). The E-turns of that path are at (1, 1),(2, 3),(5, 4) and the N -turns
are at (1, 0), (2, 1),(5, 3),(6, 4).

The algorithm subject to study has been developed with the intent to mini-
mize the enumeration time of all the paths from the starting point P0 to a final
point Pf with a given number of turns by omitting the generation of unwanted
paths.

From a multiset perspective, a turn refers to two consecutive elements of a
permutation that belong to two different items (in this context N and E ). In
fact, if we call a block a sequence of consecutive elements belonging to the same
multiset item, then the number of turns is equal to the number of blocks minus
one.

Referring again to the Figure 1, that sample path multiset permutation is
generated from the multiset

{
N5, E6

}
and is ENENNEEENEN . Here the

number of turns is 7 and the number of blocks is clearly 8.

3 Support Algorithms

3.1 Lexicographic permutation generation
The algorithm goes back to Narayana Pandita in 14th century India, and has
been frequently rediscovered ever since, indeed an in deepth description has
been given by Knuth [2] as Algorithm L.
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The idea follows a simple principle, given a sequence of n elements a1a2 . . . an
initially sorted so that a1 ≤ a2 ≤ . . . ≤ an this algorithm produces all permuta-
tions visiting them in lexicographic order.

Example. The permutations of {1, 2, 2, 3}, ordered lexicographically, are
1223, 1232, 1322, 2123, 2132, 2213, 2231, 2312, 2321, 3122, 3212, 3221
In general, the lexicographic successor of any combinatorial pattern a1 . . . an

is obtained with a three-step procedure:

1. Find the largest i such that ai can be increased.

2. Increase ai by the smallest feasible amount.

3. Find the lexicographically least way to extend the new a1...ai to a complete
pattern.

3.1.1 Algorithm

This particular algorithm has some characteristics that make it attractive for
our scopes.

It is fast : its time complexity to generate the next permutation is linear in
the length of the array O(N).

It is compact : it modifies the input array in-place.
It is stateless: no memory overhead is needed to keep track of how far along

it is in enumerating the permutations. The input array itself is enough to
determine the next permutation.

Its output is sorted : it enumerates all permutations in lexicographic order.
Its output has no repetitions: when the input array has duplicate elements,

it correctly outputs only distinct permutations.

Steps.

1. [Visit] Visit the permutation a1 . . . an.

2. [Find i] Set i ← n − 1. While ai ≥ ai+1 decrease i by 1 repeatedly.
Terminate if i = 0. (At this point i is the smallest subscript such that we
have already visited all permutations beginning with a1 . . . ai. Therefore
the lexicographically next permutation will increase the value of ai)

3. [Increase ai] Set j ← n. While ai ≥ aj decrease j by 1 repeatedly. Then
interchange ai ↔ aj . (Since ai+1 ≥ . . . ≥ an, the element aj is the
smallest element greather than ai that can legitimately follow a1, . . . , ai−1
in a permutation. Before the interchange we had ai+1 ≥ . . . ≥ aj−1 ≥
aj > ai ≥ aj+1 ≥ . . . ≥ an; after the interchange we have ai+1 ≥ . . . ≥
aj−1 ≥ ai > aj ≥ aj+1 ≥ . . . ≥ an)

4. [Reverse ai+1 . . . an] Set k ← i+1 and j ← n. Then, if k < j, interchange
ak ↔ aj , set k ← k + 1, set j ← j − 1 and repeat until k ≥ j. Return to
step 1.
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3.1.2 Analysis

The input string can be viewed as a multisetM of cardinality n and multiplicities
m1, . . . ,mk.

To find all the permutations the algorithm outer loop is executed
(

n
m1...mk

)
−1

times (the first visit comes for free).
For each outer loop iteration the steps 1 to 4 are executed, whose complex-

ities are, in general, O(n).
The worst case, that is the greater number of permutations, is given when

all the elements of the input sequence are distinct. In this case, ignoring the
inner steps complexities, the cost of the algorithm to visit all the permutations
is clearly O(n!).

3.1.3 Implementation

The implementation of the algorithm consists of a generic template function
that, given an arbitrary sequence, generates the next permutation by following
the lexicographic order 1.

If the function can determine the next higher permutation, it rearranges the
elements as such and returns true. If that was not possible, because it is already
at the largest possible permutation, it rearranges the elements according to the
first permutation (sorted in ascending order) and returns false.

//! Rearranges the elements in the range [first , last) into
//! the next lexicographically greater permutation.
//!
//! @param first
//! sequence first element iterator
//! @param last
//! sequence last element iterator
//! @return
//! True if the function can rearrange the object as a
//! lexicographically greater permutation. Otherwise , the
//! function returns false to indicate that the arrangement
//! is not greater than the previous , but the lowest
//! possible (sorted in ascending order).
template <typename Iterator >
bool next_permute(Iterator first , Iterator last)
{

Iterator &a = first;
int n = last -first;

// Step 2 : Find i
int i = n-2;
while (0 <= i && a[i] >= a[i+1])

i--;

if (i < 0) // Termination condition
{

1An equivalent implementation of this algorithm is used by the ISO C++ Standard Library
function next_permutation
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// rearrange to the smaller permutation
for (int k = 0, j = n-1; k < j; k++, j--)

std::swap(a[k], a[j]);
return false;

}

// Step 3: increase a[i]
int j = n-1;
while (a[i] >= a[j])

j--;
std::swap(a[i], a[j]);

// Step 4: reverse a[i+1] ... a[n-1]
for (int k = i+1, j = n-1; k < j; k++, j--)

std::swap(a[k], a[j]);

return true;
}

Along with the main function, an additional function is proposed to visit
each generated permutation.

//! Visit function pointer type alias.
template <typename Iterator >
using visit_func = void (*)( Iterator first , Iterator last);

//! Generates and visits all the sequence permutations.
//!
//! @param first
//! Sequence first element iterator.
//! @param last
//! Sequence last element iterator.
//! @param visit
//! Visit function pointer.
template <typename Iterator >
void visit_permutations(Iterator first , Iterator last ,

visit_func <Iterator > visit)
{

do {
// Step 1 : Visit
visit(first , last);

} while (next_permute(first , last ));
}

3.1.4 Empirical results

The algorithm has been applied to lists with distinct elements to examine the
timing of the worst case.

Variables

• n : sequence length;

• perms : number of permutations;
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• time : computation time in milliseconds.

Table 1: Permutations results

The permutations numbers grows very fast, to allow a better view of the
graph points the x and y axis values were logarithmically scaled.

Figure 2: perms = f(n), time = g(n)

As expected the empirical results are coherent with the theoretical ones.
When all the elements are different the complexity is O(n!). We can also note
that the time fits well as a linear function of the number of permutations; that
means that the generation complexity of each permutation can be assumed to
be linear.
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Figure 3: time = h(perms)

The data interpolation, when all the sequence elements are distinct, gives
the following linear relation between paths and time:

time = 0.0000793073 · perms+ 5.29699

3.2 Generating all partitions of an integer
Even if this algorithm is not directly used by the G2DLP algorithm, it is concep-
tually linked with the other partitioning algorithm presented that is instead used
directly, therefore, for completeness, it has been examined and implemented as
well2.

The simplest and one of the fastest way to generate all partitions is to visit
them in reverse lexicographic order starting with n and ending with 1 . . . 1 .

Example. The partitions of 8 are
8, 71, 62, 611, 53, 521, 5111, 44, 431, 422, 4211, 41111, 332, 3311,
3221, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111
The algorithm was described by Knuth [1] as Algorithm P.
If a partition isn’t all 1s, it ends with (x+1) followed by zero or more 1s, for

some x > 1; therefore the next smallest partition in lexicographic order after
[. . .](x+ 1)[1 . . . 1] is obtained by replacing the suffix (x+ 1)[1 . . . 1] by x[. . . x]r
for some appropriate remainder r ≤ x.

That is, given the partition pi = [. . .](x + 1)[1 . . . 1], the next partition in
lexicographic order will be pi+1 = [. . .]x[. . . x]r. If we set k equal to the number
of 1s in the suffix of pi plus one, then the number of xs of pi+1 is given by one
plus the integer quotient of k/x and r is given by its remainder .

Example. pi = 9741111111 then x = 3, k = 8 and pi+1 = 973332.

3.2.1 Algorithm

This algorithm generates all partitions a1 . . . am for the positive integer n ≥ 1
with a1 ≥ a2 ≥ . . . ≥ am ≥ 1 , a1 + a2 + . . .+ am = n, and 1 ≤ m ≤ n .

2An implementation is provided with the companion sources
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Steps.

1. [Initialize] Set a0 ← 0 and m← 1.

2. [Store the final part] Set am ← n and if n = 1 then q ← m−1 else q ← m.

3. [Visit] Visit the partition a1a2 . . . am. Then if aq 6= 2 go to Step 5 .

4. [Change 2 to 1 + 1] Set aq ← 1, q ← q − 1, m ← m + 1, am ← 1, and
return to step 3.

5. [Decrease aq] Terminate the algorithm if q = 0. Otherwise set x← aq−1,
aq ← x, n← m− q + 1,and m← q + 1.

6. [Copy x if necessary] If n ≤ x, return to step 2. Otherwise set am ← x,
m← m+ 1, n← n− x, and repeat this step.

3.3 Generating all partitions of an integer with a fixed
number of parts

The following algorithm generates all partitions of a positive integer n into a
fixed number of parts m in colexicographic order.

For example, when n = 11 and m = 4 the successive partitions visited are:
8111, 7211, 6311, 5411, 6221, 5321, 4421, 4331, 5222, 4322, 3332
The method was featured in Hindenburg’s 18-th century dissertation (In-

finitinomii Dignitatum Exponentis Indeterminati) and was deeply described by
Knuth [1] as Algorithm H.

The basic idea is that colexicographic order goes from one partition a1 . . . am
to the next by finding the smallest j such that aj can be increased without
changing aj+1 . . . am.

The new partition a
′

1 . . . a
′

m will have a
′

1 ≥ . . . ≥ a
′

j = aj+1 and a
′

1+. . .+a
′

j =
a1 + . . . + aj , and these conditions are achievable if and only if aj < a1 − 1.
Furthermore, the smallest such partition a

′

1 . . . a
′

m in colexicographic order has
a

′

2 = . . . = a
′

j = aj + 1.

3.3.1 Algorithm

This algorithm generates all integer m-tuples a1 . . . am such that a1 ≥ . . . ≥
am ≥ 1 and a1 + . . .+ am = n, assuming that n ≥ m ≥ 2.

Steps.

1. [Initialize] Set a1 ← n − m + 1 and aj ← 1 for 1 < j ≤ m. Also set
am+1 ← −1.

2. [Visit] Visit the partition a1 . . . am. Then go to step 4 if a2 ≥ a1 − 1.

3. [Tweak a1 and a2] Set a1 ← a1 − 1, a2 ← a2 + 1, and return to step 2.
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4. [Find j] Set j ← 3 and s← a1+a2−1. Then, if aj ≥ a1−1, set s← s+aj ,
j ← j + 1, and repeat until aj < a1 − 1. (Now s = a1 + . . .+ aj−1 − 1)

5. [Increase aj ] Terminate if j > m. Otherwise set x ← aj + 1, aj ← x,
j ← j − 1.

6. [Tweak a1 . . . aj ] While j > 1, set aj ← x, s ← s − x, j ← j − 1. Finally
set a1 ← s and return to step 2.

3.3.2 Analysis

Given two non negative integers n and m, with m ≤ n, the generation time
complexity of the set of all the partitions of n with a fixed number of parts m
is strictly bound to the cardinality of the resulting set. Such a number is given
by the recursive function

p(n,m) =

 1 m = 1
p(n− 1,m− 1) + p(n−m,m) m ≤ n
0 default

A plot for this function for a fixed value of n and 0 < m ≤ n is given in Figure
6. The graph of the function allows us to speculate that the maximum number
of partitions is given for m ≈ 0.2n. Such a value can be taken as the algorithm
worst case in terms of running time with a given value n.

Furthermore, analyzing the function graph for a fixed value of m we can
deduce that the grow is clearly exponential in function of n.

Figure 4: Partition results: partitions = f(n,m = 5)

An in-depth study about this topic is given by Wilf [8].

3.3.3 Implementation

The algorithm has been implemented as a function template that generates the
next partition following the current in lexicographic order. If the function can
determine the next partition, it rearranges the elements as such and returns
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true. If that was not possible it rearranges the elements according to the first
partition (in lexicographic order) and returns false.

Note, this implementation differs from the Kuo’s choice to use directly the
original implementation provided by Knuth, that is the one where the results are
given by following a colexicographic order. Our motivations for the lexicographic
ordering choice are clear if we consider that (later) the output of the algorithm
Partition will be used as the input of the algorithm Permute, and this last one
needs an input sequence that is already lexicographically ordered. Although this
modification omits only a linear time operation (the inversion of each sequence),
and as such does not alter the overall complexity, the solution is clearly more
elegant.

//! Uses the input sequence [first ,last) elements to generate the
//! next greater partition in lexicographic order.
//!
//! @param first
//! Sequence first element iterator.
//! @param last
//! Sequence last element iterator.
//! @return
//! True if the function could generate a lexicographically
//! greater partition. Otherwise , the function returns false
//! to indicate that the arrangement is not greater than the
//! previous , but the lowest possible (in ascending order).
template <typename Iterator >
bool next_partition(Iterator first , Iterator last)
{

Iterator &a = first;
int m = last -first;
if (m < 2)

return false;
if (a[m-2] < a[m-1] -1)
{

// Step 3 : tweak a[0] and a[1]
a[m -2]++;
a[m-1]--;

}
else
{

// Step 4 : find j
int j = m-3;
int s = a[m-2] + a[m-1] - 1;
while (j != -1 && a[j] >= a[m-1] -1)
{

s += a[j];
j--;

}

if (j == -1) // Termination condition
{

// Reset to the smallest partition
first_partition(s+1, first , last);
return false;

}
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// Step 5 : increase a[j]
int x = a[j] + 1;
a[j] = x;
j++;

// Step 6 : tweak a[j]...a[m-1]
while (j < m-1)
{

a[j] = x;
s -= x;
j++;

}
a[j] = s;

}

return true;
}

Along with the main function, two additional functions are proposed. One
to generate the first integer partition (in lexicographical order) and one to se-
quentially visit each generated partition.

//! Generates the lexicographically smaller partition that can
//! be obtained from the integer n filling the sequence elements.
//! All but the last elements of the sequence are set to 1.
//! Precondition: (last -first) <= n
//!
//! @param n
//! Integer to partition.
//! @param first
//! Sequence first element iterator.
//! @param last
//! Sequence last element iterator.
template <typename Integer , typename Iterator >
void first_partition(Integer n, Iterator first , Iterator last)
{

Iterator& a = first;
Integer m = last -first;
// Step 1 : initialize
while (a != last -1)

*a++ = 1;
*a = n - m + 1;

}

//! Visit function pointer type alias.
template <typename Iterator >
using visit_func = void (*)( Iterator first , Iterator last);

//! Generates and visits all the sequence partitions.
//!
//! @param first
//! Sequence first element iterator.
//! @param last
//! Sequence last element iterator.
//! @param visit
//! Visit function pointer.
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template <typename Iterator >
void visit_partitions(Iterator first , Iterator last ,

visit_func <Iterator > visit)
{

do {
// Step 2 : Visit
visit(first , last);

} while (next_partition(first , last ));
}

3.3.4 Empirical results

In the experiment we’ve analyzed the partitioning time of an integer n in m
parts, with m ≤ n and n ≤ 100, using the provided implementation.

Variables

• n : positive integer to partition;

• m : number of parts;

• partitions : number of partitions;

• time : computation time in milliseconds.

Figure 5: partitions = f(n,m), time = g(n,m)

The generation time is clearly linearly related to the number of partitions.
This means that, once again, we are able to find a formula that allows us to
estimate the generation time given the number of partitions.

time ≈ 0.0000476257 · partitions+ 0.439574

Looking at the graph we can deduce that the behaviour of both functions is very
regular with respect to the number n. Follows the detail of how the partitions
number changes for a fixed value n and in function to the number of parts m.
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Figure 6: Partition results: partitions = f(n = 100,m)

From the experimental results we can deduce that, for a fixed non negative
integer n, the maximum number of partitions is given when the number of parts
is approximately m = 0.2 · n.

3.4 Alternate Merge
This is a trivial algorithm used to merge two sequencies by alternating their
elements. The only precondition of the algorithm is that the length of the
second sequence is equal or one element less than the length of the former.

3.4.1 Algorithm

Given two sequencies A ← {a1, a2, . . . , an} and B ← {b1, b2, . . . , bm}, with
0 ≤ n−m ≤ 1,

if n = m then AltMerge(A,B) = {a1, b1, a2, b2, . . . , an, bm}
else if n = m+ 1 then AltMerge(A,B) = {a1, b1, a2, b2, . . . , an−1, bm, an}

Figure 7: Alternate Merge

4 Lattice paths generation with a given number
of turns

4.0.2 Definitions and theorems

In the Kuo [4] paper all the theorems are given ”as-is” without any proof.
Perhaps the choice is due to the fact that most of the proofs looks trivial,
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however, we prefer to fill the gap and add an argument for each assertion.

Definition 1. Let t denote the number of turns of a path that has tE E-turns
and tN N -turns, that is, t = tE + tN .

Lemma 1. |tE − tN | = 0 or |tE − tN | = 1

Proof.

All the possible paths from one point to the other are composed by sequences
of N -steps and E-steps.

If a path starts with an E-step then it can terminate with an E-step or with
a N -step. If it terminates with an E-step then, inside the path, for each N -turn
there is exactly one E-turn to re-establish the E-direction, that is |tE− tN | = 0.
If it terminates with a N -step then, inside the path there must be an N -turn
more, so we have |tE − tN | = 1.

If a path starts with a N -step the argument is similar.

�

Lemma 2. If t is even (2k), then tE = tN = k. If t is odd (2k − 1), then
tN = k and tE = k−1 when the first step is eastward, or tE = k and tN = k−1
when the first step is northward.

Proof.

Using Lemma 1.
If t is even (2k), then it should be |tE − tN | = 0, that imply tE = tN = k.

This is the case that happens when the path ends with the same step as the
first one.

If t is odd (2k − 1), then, it should be |tE − tN | = 1. If the first step is
eastward the last step must be northward and there is an N -turn more, that is
tN = k and tE = k − 1 (tN − tE = 1).

If the first step is northward the argument is similar and tE = k and tN =
k − 1 (tE − tN = 1).

�

Lemma 3. Given a path from P0 = (0, 0) to an arbitrary end point Pf =

(n1, n2) then the path to reach P
′

f = (n
′

1, n
′

2) = (n1 + 1, n2 + 1) adds at least
one turn and a maximum of two turns to the previous path.

Proof.

The proof is given graphically.
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Figure 8:

In Figure 8 is shown how a maximum of two turns can be added to move
from Pf = (n1, n2) to P

′

f = (n
′

1, n
′

2). If the last step to arrive to P was a
northward step then we can turn one time East and one time North. If the last
step to arrive to P was an eastward step we follow a similar argument.

�

Lemma 4. For a 2D rectangular lattice L(n1, n2), n1 > 0 and n2 > 0,
assume that n1 ≤ n2, the minimum number of turns of a path is 1 and the
maximum number of turns of a path is 2n1 − 1 if n1 = n2 or 2n1 if n1 < n2.

Proof.

The minimum number of turns t is trivially 1 so we concentrate with the max-
imum number of turns. The proof is by induction on the lattice size.

When n1 = n2.
Base case. n1 = n2 = 1 and t = 2n1 − 1 = 1.
Inductive hypothesis: n1 = n2 and tmax = 2n1 − 1.
Inductive step: n

′

1 = n
′

2 = n1 + 1 and, for Lemma 3, the maximum number
of turns t

′
= t+2. That is t

′
= t+2 = (2n1−1)+2 = 2n1+1 = 2(n1+1)−1 =

2n
′

1 − 1.
When n1 < n2.
Base case: n1 = 1, n2 = k > 1, and t = 2n1 = 2.
If the path starts in the eastward direction and has an N -turn before k then

we have a maximum of two turns because an E-turn is required to reach the
final position.

Figure 9:
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Inductive hyphothesis: n1 < n2 and t = 2n1.
Inductive step: n

′

1 = n1 + 1, n
′

2 = n2 + 1 and, for Lemma 3, the maximum
number of turns t

′
= t+ 2. That is t

′
= t+ 2 = 2n1 + 2 = 2(n1 + 1) = 2n

′

1.

�

Theorem 1. Let P (n1, n2, t) denote the number of paths with a given number
of turns t, then

P (n1, n2, t) =


(
n1−1
k

)
·
(
n2−1
k−1

)
+
(
n2−1
k

)
·
(
n1−1
k−1

)
t = 2k

2 ·
(
n1−1
k−1

)
·
(
n2−1
k−1

)
t = 2k − 1

Proof.

(t = 2k)

In the identity (1), the first term of the sum stands for the number of paths
starting with an east step, and the second term stands for the number of paths
starting with a north step.

For a path with even turns, by Definition 1 and Lemma 2, we know that
it must be composed of k E-turns and k N -turns. Thus, when the first step
is eastward, what we need to do in the whole route is choose k points from
n1 − 1 points and choose k − 1 points from n2 − 1 points. When the first step
is northward, what we need to do in the whole route is choose k points from
n2 − 1 points and choose k − 1 points from n1 − 1 points.

Since the first step is either eastward or northward, we have the first iden-
tity.

(t = 2k − 1)

Similary, for a path with odd turns, by Definition 1 and Lemma 2, we know
that it must be composed of k E-turns and k − 1 N -turns when first step is
northward, or that it must be composed of k N -turns and k − 1 E-turns when
first step is eastward, what we need to do in the whole path are choose k − 1
points from n1− 1 points and choose k− 1 points from n2− 1 points. Since the
first step is either northward or eastward, we have the second identity.

�

4.1 Trivial approach
The straightforward way to generate all the paths from a point to another with
a given number of turns is by using brute force.
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4.1.1 Algorithm

All the paths from a point P0 = (0, 0) to a point Pf = (n1, n2) are composed of
n1 E -steps and n2 N -steps. The algorithm strategy is reduced to:

1. Generate all the possible paths, by generating all the permutations of the
multiset {En1 , Nn2}.

2. Select the paths with the given number of turns.

For example. If Pf = (3, 2), the paths are generated by considering all the
permutations of the multiset

{
E3, N2

}
:

EEENN,EENEN,EENNE,ENEEN,ENENE,
ENNEE,NEEEN,NEENE,NENEE,NNEEE
And then selecting the paths with the given number of turns, e.g. 2:
EENNE,ENNEE,NEEEN

4.1.2 Analysis

Given the lattice L(n1, n2), the algorithm overall complexity is strictly bound to
the complexity of the generation of all permutations of the multiset {En1 , Nn2}.
The number of turns variable is not significative for the analysis, and this is
because all the possible permutations are always generated and visited, at least,
to perform the n− 1 comparisons.

Theorem. The time complexity of a simple multiset permutation algorithm
for generating two-item {En1 , Nn2} multiset permutations according to a given

number of turns is O
(

nn+1.5

n
n1+0.5
1 ×nn2+0.5

2

)
, here n = n1 + n2; and in case n1 = n2

the time complexity is O
(
n0.52n+1

)
.

Proof.

For a two-item multiset permutation, there are totally
(
n1+n2

n1

)
=
(
n
n1

)
= n!

n1!n2!
permutations. Even if we ignore the generation complexity of each permutation,
each one of these needs n − 1 comparisons to calculate how many turns it has
(eg. this can be done in the Visit Step of the Permute Algorithm).

It is well known that the factorial function has exponential growth. By using
Stirling approximation, n! =

√
2πn

(
n
e

)n, we have:

n!
n1!n2!

=
√
2πn(n

e )
n

√
2πn1(n1

e )
n1
√
2πn2(n2

e )
n2 =

√
1
2π

nn+0.5

n
n1+0.5
1 +n

n2+0.5
2

then after multiplying the term by n−1 we have O
(

nn+1.5

n
n1+0.5
1 ×nn2+0.5

2

)
. Moreover,

in the case n1 = n2 the time complexity is O
(
n0.52n+1

)
. In other words, the

running time is exponential on the problem size n.

�
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4.1.3 Implementation

The implementation directly uses the Permute algorithm with a Visit step im-
plemented to perform the n−1 comparisons to check if the current permutation
has the required number of turns.

template <typename Iterator >
void visit(const Iterator first , const Iterator last)
{

int turns = 0;
for (Iterator i = first; i != last -1; i++)
{

if (*i != *(i+1))
turns ++;

}
if (turns == required_turns)

paths ++;
visits ++;

}

4.1.4 Empirical results

Variables

• n1 : lattice destination point x -coordinate;

• n2 : lattice destination point y-coordinate;

• turns : number of turns;

• paths : number of paths with the given number of turns;

• visits : number of generated permutations; this is equal to the number of
calls to the Visit Step;

• time : computation time in milliseconds;

Experiment 1. 2 ≤ n1 ≤ 15, n2 = n1
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Table 2: Trivial approach results

The permutations numbers grows very fast, to allow a better view of the
graph points the x and y axis values were logarithmically scaled.

Figure 10: Permute Results: paths = f(n1 + n2), visits = g(n1 + n2), n1 = n2

Figure 11: Permute Results: time = f(n1 + n2), n1 = n2
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The time is approximately a linear function of the number of visits and paths.
That is, given A, B, C, D real numbers

time ≈ A · paths+B

time ≈ C · visits+D

Figure 12: time = f(paths), time = g(visits)

With the above experimental results, we’ve found the following best fitting linear
equations:

time ≈ 0.00906556 · paths− 415.267

time ≈ 0.00137428 · visits− 398.835

This also means that the visits and the paths found are linearly related. And
in this case the equation is

paths = 0.15159 · visits+ 1860.29

When n1 = n2 = turns, approximatelly only the 15% of our visits, and conse-
quently of the computation time, is really usefull for the final result.

Experiment 2. 2 ≤ n1 ≤ 15, 2 ≤ n2 ≤ 15
The results table is not reported here for space reasons, anyway from the

graph plot we can clearly see the exponential growth bound to the value of n1
and n2.
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Figure 13: visits = f(n1, n2), time = g(n1, n2)

Again, from the experiments the time is clearly a linear function of the
number of visits (and paths).

Figure 14: time = h(visits)

By using the same best fitting technique used by the n1 = n2 case, we reach
to the following linear equation:

time ≈ 0.00134622 · visits− 166.451

The result can be assumed to be compatible with the previous interpolation.

4.2 G2DLP
The G2DLP algorithm has been proposed by Kuo [4] and is the argument at
the center of this paper. In his article Kuo asserts that the algorithm is linear in
time. Unfortunately, it is not very clear on what is linear and in function of what.
In this discussion we will show that, if the dependent variable is the algorithm
running time, then the only linearly related variable is the number of paths.
Moreover, given a 2D lattice of arbitrary size, we will extrapolate a running
time value approximation that gives us an idea of the problem complexity.

The experimental results allows a direct comparison against the trivial ap-
proach, and this will clearly shows how the algorithm significantly reduces the
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time complexity in the generation of all the paths from a point to another with
a given number of turns, even in the worst case.

The algorithm borrows the Permute, Partition and AltMerge algorithms.

4.2.1 Algorithm

To construct all the paths from the point P0 = (0, 0) to the point Pf = (n1, n2)
with a given number of turns, the strategy is to divide the x and y axis into
blocks (or parts) of E-steps and N -steps using the following rules:

• [Partition] Generate every n1 and n2 partition

– If the number of turns is even (t = 2k)

1. When the first step is eastward there will be k E-turns, k N -
turns, k + 1 E-blocks and k N -blocks. Partition n1 into k + 1
parts, partsA, and n2 in k parts, partsB .

2. When the first step is northward there will be k E-turns, k N -
turns, k E-blocks and k+1 N -blocks. Partition n2 in k+1 parts,
partsC , and n1 in k parts, partsD.

– If the number of turns is odd (t = 2k − 1)

1. When the first step is eastward there will be k−1 E-turns, k
N -turns, k E-blocks and k N -blocks. Partition both n1 and n2
in k parts, partsA and partsB .

2. When the first step is northward there will be k E-turns and
k − 1 N -turns, k E-blocks and k N -blocks. Partition both n1
and n2 in k parts, partsC and partsD.

• [Permute] For each X in {A,B,C,D}, generate all the permutations of
partsX and store the results in permsX list.

• [Merge] Alternate merge every element of permsA with every element of
permsB and every element of permsC with every element of permsD to
get all the possible paths from P0 to Pf with the given number of turns.

Example. Generation of the set of all paths from the point P0 = (0, 0) to
Pf = (n1 = 4, n2 = 3) with 4 (even) turns.

Generate all the paths starting with an E -step.
partsA = Partition(n1 = 4, k = 3) = {112}
permsA = Permute(partsA) ={112, 121, 211}
stepsA = ToSteps(permsA, E) = {〈E,E,EE〉 , 〈E,EE,E〉 , 〈EE,E,E〉}
partsB = Partition(n2 = 3, k = 2) = {12}
permsB = Permute(partsB) = {12, 21}
stepsB = ToSteps(permsB , N) = {〈N,NN〉 , 〈NN,N〉}
pathsE = AltMerge(stepsA, stepsB) =

{〈ENENNEE〉 , 〈ENNENEE〉 , 〈ENEENNE〉}
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{〈ENNEENE〉 , 〈EENENNE〉 , 〈EENNENE〉}
Generate all the paths starting with an N -step.
partsC = Partition(n2 = 3, k = 3) = {111}
permsC = Permute(partsC) = {111}
stepsC = ToSteps(permsC , N) = {〈N,N,N〉}
partsD = Partition(n1 = 4, k = 2) = {13, 22}
permD = Permute(partsD) = {13, 31, 22}
stepsD = ToSteps(permD, E) = {〈E,EEE〉 , 〈EEE,E〉 , 〈EE,EE〉}
pathsN = AltMerge(stepsC , stepsD) =

{〈NENEEE〉 , 〈NEEENE〉 , 〈NEENEE〉}
Add the paths to obtain all the possible paths with 4 turns from P0 = (0, 0)

to Pf = (4, 3).
paths = pathsE ∪ pathsN

Figure 15:

In Figure 15 one path from the above example, in particular the path〈ENENNEE〉.

4.2.2 Analysis

Theoretically, once we found the sets permsA,B,C,D the problem can be declared
as solved, but in practice we want to finish the paths generation process. This is
where the algorithm bottleneck is, we need to compute the cartesian products
permsA × permsB and permsC × permsD and this operation complexity is
clearly bound to the sets number of elements, and this number is linked with
the number of turns.

Theorem 1 states that given a lattice L(n1, n2), the number of paths with a
given number of turns t, P (n1, n2, t), is P (n1, n2, 2k) =

(
n1−1
k

)
·
(
n2−1
k−1

)
+
(
n2−1
k

)
·(

n1−1
k−1

)
when t is even and P (n1, n2, 2k− 1) = 2 ·

(
n1−1
k−1

)
·
(
n2−1
k−1

)
, when t is odd.

Suppose that the number of turns is even (2k). When the first step is
eastward the number of different E-steps permutations, |permsA|, is

(
n1−1
k

)
and

the number of different N -steps permutations, |permsB |, is
(
n2−1
k−1

)
. When the
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first step is northward the number of different E-steps permutations, |permsC |,
is
(
n1−1
k−1

)
and the number of differentN -steps permutations, |permsD|, is

(
n2−1
k

)
.

Suppose that the number of turns is odd (2k−1). No matter if the first step is
eastward or northward, the number of different E-steps permutations, |permsA|
and |permsD|, is

(
n1−1
k−1

)
and the number of different N -steps permutations,

|permsB | and |permsC |, is
(
n2−1
k−1

)
.

Using the Stirling approximation, n! =
√
2πn

(
n
e

)n, we can be confident
that, for a fixed a number of turns, the Theorem 1 formula generally grows
exponentially with respect to n1 and n2, with the following few borderline cases
exception:

• turns = 2k − 1 = 1

The number of paths is constant and equal to 2.

P (n1, n2, t = 2k − 1 = 1) = 2 ·
(
n1−1

0

)
·
(
n2−1

0

)
= 2

• turns = 2k = 2

The number of paths is a linear function of n1 and n2.

P (n1, n2, t = 2k) =
(
n1−1

1

)
·
(
n2−1

0

)
+
(
n2−1

1

)
·
(
n1−1

0

)
= n1 + n2 − 2

• turns = 2k − 1 = 2n1 − 1, n1 = n2

The number of paths is constant and equal to 2.

P (n1, n2, t = 2k − 1 = 2n1 − 1) = 2 ·
(
n1−1
n1−1

)
·
(
n2−1
n2−1

)
= 2

• turns = 2k = 2n1 − 2, n1 = n2

The number of paths is a linear function of n1 and n2.

P (n1, n2, t = 2k = 2n1−2) =
(
n1−1
n1−1

)
·
(
n2−1
n2−2

)
+
(
n2−1
n2−1

)
·
(
n1−1
n1−1

)
= n1+n2−2

It is worth noting that the exponential complexity of such a problem is not
linked with the algorithm but is strictly bound to the problem solution, that
is, if the number of paths with a given number of turns are an exponential
function of the lattice size then the algorithm that generates such paths should
be exponential.

Worst case. Given a lattice L(n1, n2), the problem worst case, that is the one
that generates the bigger number of paths, is obtained by finding the maximum
for the Theorem 1 formula in function of the number of turns. The exact
problem solution can be reconducted to the maximization of a function of the
form h(k) =

(
n1

k

)
·
(
n2

k

)
, for two fixed non negative integers n1 and n2 and a non

negative integer k, with 0 ≤ k ≤ min(n1, n2).
That value can be proven to be k =

⌈
n1n2−1
n1+n2+2

⌉
Proof.

We have that k(k) < h(k + 1) if
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(
n1

k

)
·
(
n2

k

)
<
(
n1

k+1

)
·
(
n2

k+1

)
That is if

n1!
k!(n1−k)!

n2!
k!(n2−k)! <

n1!
(k+1)!(n1−k−1)!

n2!
(k+1)!(n2−k−1)!

Equivalent to

(k+1)!(k+1)!(n1 − k− 1)!(n2 − k− 1)! < k!k!(n1 − k)!(n2 − k)!

And simplifying

(k + 1)2 < (n1 − k)(n2 − k)

That is true for

k < n1n2−1
n1+n2+2

So the maximum is reached for the value immediately following that bound,
that is for k =

⌈
n1n2−1
n1+n2+2

⌉
.

�

Further analysis. Can be interesting understand how the numbers from the
partitioning and permutation algorithms relates to and the G2DLP ones.

Given a lattice L(n1, n2), the number of paths from P0 = (0, 0) to Pf =
(n1, n2) in function of the number of turns t graph is in general a bell shaped
graph as a direct consequence of the binomial coefficients in the Theorem 1
formula.

Figure 16: paths(n1, n2, t)

To understand how the partitioning algorithm, whose complexity function
p(n, t) graph looks like a binomial distribution with p ≈ 0.2 (skewed to the right),
can be part of an algorithm which resulting paths numbers distributes like a
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binomial coefficient we must apply the permutation algorithm to the sequences
generated by the partitioning function. Indeed, It has been empirically observed
that if we partition a fixed number n into m parts, and then we permute each
obtained sequence, then the number of such permutations graph has a perfect
bell shape.

In short, if p(n,m) is the function counting the number of partitions of an
integer n with a given number of parts m, then there exists a function f and
two non negative natural numbers a and b such that

f(p(n,m)) =
(
a
b

)
Follows an experiment with n = 30 and 1 ≤ m ≤ n.

Figure 17: p(n,m) and f(p(n,m))

Table 3:
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4.2.3 Implementation

In this implementation the fixed width partitions are generated via the Partition
algorithm and each one is permuted using the Permute algorithm.

At the end the paths are generated using a function that performs the
ToSteps and AltMerge algorithms.

//! Partitions list type alias
using parts_list = vector <vector <int >>;

//! Generates all the partitions permutations
//! @param n
//! Integer value to partition.
//! @param m
//! Partition sequence length.
//! @param parts
//! Output partitions list.
static void partition(int n, int m, parts_list &parts)
{

vector <int > a(m); // Working sequence
first_partition(n, a.begin(), a.end ());
do {

do {
parts.push_back(vector <int >(a)); // Copy

} while (next_permute(a.begin(), a.end ()));
} while (next_partition(a.begin(), a.end ()));

}

//! Alternate merge the two partition lists
//! @param step1
//! Step type contained in the parts1 list
//! @param step2
//! Step type contained in the parts2 list
//! @param parts1
//! First partition list.
//! @param parts1
//! Second partition list.
static void altmerge(char step1 , char step2 ,

parts_list &parts1 , parts_list &parts2)
{

for (auto p1 = parts1.begin (); p1 != parts1.end(); p1++)
{

for (auto p2 = parts2.begin (); p2 != parts2.end(); p2++)
{

string s;
for (unsigned i = 0; i < p1->size ()+p2 ->size (); i++)
{

auto q = i/2;
if (i % 2 == 0)

for (auto j = 0; j < (*p1)[q]; j++)
s += step1;

else
for (auto j = 0; j < (*p2)[q]; j++)

s += step2;
}
cout << s << endl;
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}
}

}

//! G2DLP Algorithm as described by Kuo.
//! @param n1
//! Lattice x-axis dimension.
//! @param n2
//! Lattice y-axis dimension.
//! @param turns
//! Number of turns.
void g2dlp(int n1 , int n2 , int turns)
{

int k = (turns +1)/2;
parts_list parts_a , parts_b , parts_c , parts_d;

if (turns % 2 == 0)
{

// First step is Eastward
partition(n1 , k+1, parts_a );
partition(n2 , k, parts_b );
// First step is Northward
partition(n2 , k+1, parts_c );
partition(n1 , k, parts_d );

}
else
{

// First step is Eastward
partition(n1 , k, parts_a );
partition(n2 , k, parts_b );
// First step is Northward
parts_c = parts_b;
parts_d = parts_a;

}

altmerge(’E’, ’N’, parts_a , parts_b );
altmerge(’N’, ’E’, parts_c , parts_d );

}

4.2.4 Empirical results

Variables

• n1 : lattice horizontal dimension;

• n2 : lattice vertical dimension;

• turns : number of turns;

• paths : number of paths with a given number of turns;

• time : computation time in milliseconds.
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Experiment 1. 2 ≤ n1 ≤ 15, n2 = n1 = t . Table 4 resumes the experimental
results for the G2DLP algorithm with n1 = n2 and with a number of turns equal
to one of the dimensions.

Unlike the trivial approach, the number of turns is important for the result,
and in this experiment we are going to set turns = n1 with the effect to evaluate
the worst case, that is the one that generates the maximum number of paths.

Table 4: G2DLP results, n1 = n2 = t

The results numbers grows very fast, to allow a better view of the graph the
x and y axis were logarithmically scaled.

Figure 18: paths = f(n1 + n2, t = n1), time = g(n1 + n2, t = n1)
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Figure 19: time = h(paths)

Table 4 also compares the G2DLP algorithm numbers with the the trivial
ones. From the results is evident that the former increases the overall perfor-
mances in the generation of the lattice paths with a given number of turns even
in the worst case (n1 = n2 = t), anyway the algorithm is still exponential in
complexity and not linear as the author asserts.

Figure 20 shows how, for two fixed values n1 and n2, the running time is
bound to the number of generated paths and how these are distributed with
respect to the number of turns t. Clearly the maximum number of paths, and
so the generation time, is given for t = n1 = n2. This result is coherent with
the Theorem 1 and the algorithm theoretical analysis.

Figure 20: paths = f(turns), time = g(turns), n1 = n2 = 15

Using the experimental results from the G2DLP worse case n1 = n2 = t,
the following linear relationships are found

timeg2dlp ≈ 0.00107114 · paths− 45.3796

timetrivial ≈ 0.00906556 · paths− 415.267

With a limit of the ratio timetrivial/timeg2dlp ≈ 8.46347, meaning that, in the
worst case, the G2DLP algorithm is still ∼ 8.5 times faster than the trivial
approach.

Is worth noting that this ratio grows exponentially while the number of turns
moves away from the lattice dimensions.
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Experiment 2. 2 ≤ n1 ≤ 15, 2 ≤ n2 ≤ 15 The results table is not re-
ported here for space reasons, anyway from the graphs we can clearly see the
exponential growth linked to the value of n1 and n2.

Figure 21: paths = f(n1, n2, t = 4), time = g(n1, n2, t = 4)
,

Figure 22: time = h(paths, t = 4)
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Figure 23: paths = f(n1, n2, t = 8), time = g(n1, n2, t = 8)

Figure 24: time = h(paths, t = 8)
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Figure 25: paths = f(n1, n2, t = 15), time = g(n1, n2, t = 15)

Figure 26: time = h(paths, t = 15)
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Figure 27: paths = f(n1, n2, t = 20), time = g(n1, n2, t = 20)
,

Figure 28: time = h(paths, t = 20)

4.3 Applications
4.3.1 Cryptography

The application has been presented by Kuo [1] in its paper. Here we are going
to revisit the application with some improvements, especially related to the
application of the theoretical results to an effective and usable implementation.

The proposed application combines a substitution cipher system with the
G2DLP algorithm to become a product cipher system.

Given an ordered set of symbols A = {a1, a2, . . . , an} and a one-to-one func-
tion f : A → N, we shuffle the set A by selecting one of its |A|! permutations,
for example by using an unranking algorithm proposed by Myrvold and Ruskey
[7]. The cleartext is then processed by substituting each symbol ai with the
positionally correspondent symbol found in the selected permutation of A, this
produces the ciphertext.
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Example. If A = {x, y, z, w}and Permute(A) = {w, z, y, x}. Then, the
cleartext xxzwwwwzy is translated into wwyxxxxyz.

Next, we process the ciphertext using the G2DLP algorithm to produce the
final result.

Let L(n1, n2) be a 2D lattice. If M = max[f(A)] and k = bM+1
2 c then, to

be sure that the G2DLP algorithm produces at least one path for each symbol
ai, it should be (k < n1) ∧ (k ≤ n2) or (k ≤ n1) ∧ (k < n2)

3.
Each input symbol ai is encoded as a bit string of length n1+n2 representing

one of the possible lattice paths from P0 = (0, 0) to Pf = (n1, n2) with a number
of turns equal to f(ai). Each E-step the path is encoded with a 0 (or a 1) and
each N -step is encoded with the complementary value 1 (or 0). Which path
to use from the possible ones is randomly selected each time the symbol ai is
processed.

Example. If L(3, 3) and A = {x = 1, y = 2, z = 3, w = 4} then the following
6 bits strings can be used to encode each symbol

f(x) = 1 ⇒ select from {000111, 111000}
f(y) = 2 ⇒ select from {011100, 001110, 100011, 110001}
f(z) = 3 ⇒ select from {010011, 011001, 001011, 001101, 101100

100110, 110100, 110010}
f(w) = 4 ⇒ select from {010110, 011010, 101001, 100101}
The input string is then each time encrypted in a different way. The reverse

process, from a ciphertext to a cleartext, is always possible if we know the values
of n1,n2 and the substitution permutation.

To achieve a more effective result the lattice size can be arbitrary increased
(only limited by the computing power of the machine), with the consequence to
increment the number of possible paths, eg. if f(ai) = 13 and the lattice size
is 13 × 13 then each instance of the symbol ai can be encoded as one of the
1707552 possible 26 bits strings.

Implementation notes.

It was already proven that the complexity of the G2DLP algorithm is exponen-
tial. As an implementation note, is suggested to skip the AltMerge phase and
select rendomly the paths directly from the vectors containing the separated
E -steps and N -steps. This optimization skips all the cartesian product phase
of the algorithm, that is indeed the most

Another observation can be made regarding the algorithm encoded data
overhead. Assuming that what we want to transmit a sequence of bytes, then
the symbols set cardinality is 256 and the simplest associated integer mapping
function is f : A → [1 : 256]. Since max[f(A)] = 256 then k = 128 and the
lattice minimum dimensions are 129×128 or 128×129. Such a lattice is useless
for the majority number of turns:

> turns: 1, paths: 2, time: 0.023300
> turns: 2, paths: 255, time: 1.123182

3These values are extracted from the G2DLP algorithm preconditions in case of an even
number of turns
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> turns: 3, paths: 32512, time: 31.987583
> turns: 4, paths: 2056384, time: 1099.612278
> turns: 5, paths: 130064256, time: 62135.459239

...practically useless zone...
> turns: 253, paths: 2064512, time: 13592.381973
> turns: 254, paths: 24384, time: 179.455214
> turns: 255, paths: 256, time: 2.084976
> turns: 256, paths: 1, time: 0.032493
The worst case is given for k ≈

⌈
n1n2−1
n1+n2+2

⌉
= 64.

P (n1 = 128, n2 = 129, t = 2k = 128) = 5.69245 · 1074

Just to have an idea of what we are talking about, if we use the interpolated
linear function to get an extimated computation time we have

time ≈ 0.00107114 · 5.69245 · 1074 − 45.3796ms =
= 6.09741 · 1071ms = 1.93348 · 1061 years

So ridiculously large numbers that are comparable with a googol (10100).
Such an algorithm is realistically usable to encode just alphabets with a

limited number of symbols, such as the 26 English letters and by using lookup
tables.

4.3.2 Probability and game theory

Mohanty [5] proposed the following game. Take two coins 1 and 2 with proba-
bilities p1 and p2 of obtaining heads, respectively. The rules of the game are:

1. start with a coin i, i = 1, 2;

2. if the last trial was a tail, then make the next trial with coin 1, otherwise
with coin 2;

3. stop making further trials when for the first time the total number of
heads exceeds µ times the total number of tails by exactly a, with a fixed
a > 0.

The question is: provided the game was started by tossing coin i, i = 1 or 2,
what is the distribution of the duration of the game?

It is an easy observation that any game can be represented in terms of
a lattice path, by starting in (0, 0) and proceding with an E-step if tail (T )
was tossed and by an N -step if head (H) was tossed. If n and h are the
current number of tails and heads, respectivelly, then the game continues while
h < µn+ a.

Thus, the game THHHTHTHHHH (which is a game for µ = 2 and a = 2)
would be represented by the lattice path P in Figure 29.
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Figure 29: Dices Game

The probability of a game of length n + h = n + µn + a = (µ + 1)n + a (n
tails and h = µn+ a heads) is given as follows.

If the first toss was with coin 1, then the probability of a game, corresponding
to a path P as described above, is

pk+1
1 (1− p1)n−kpµn+a−k−12 (1− p2)k

where k denotes the number of E-turns of the path.
On the other hand, if the first toss was with coin 2, then the probability of

a game, corresponding to path P , is

pk+1
1 (1− p1)n−k−1pµn+a−k−12 (1− p2)k+1,

if the first toss resulted in tail, and

pk1(1− p1)n−kp
µn+a−k
2 (1− p2)k,

if the first toss resulted in head, respectively.
Therefore, to determine the probability of games of length (µ+ 1)n+ a, we

need to enumerate lattice paths from (0, 0) to (n, µn+ a− 1) staying below the
line y = µx + a − 1, being allowed to touch it, which have a given number of
E-turns.

To solve problems such as the one proposed it is sufficient to concentrate on
the enumeration of lattice paths with a given starting and end points, satisfying
certain restrictions, and with a given number of turns.

The game has been faced, along with some other interesting problems in-
volving lattice paths enumeration with respect to their number of turns, by
Krattenthaler [3].
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