
Distributed and Real-Time

Cyber-Physical Systems

Davide Galassi <davxy@datawok.net>

1

Table of Contents
Foundations..4

Computing Evolution..4
Monolithic Systems...4
SoS Viewpoints...5

Core Concepts...6
Data and State...7
Actions and Behavior...7
Communication...8
Interfaces...8
Dynamicity and Evolution..9
Design and Tools..9
Dependability and Security...9
Emergence..10

Interfaces..11
Layers..12

Cyber-physical interface layer..12
Informational interface layer..13
Service interface layer..13

Relied Upon Interface...14
RUI at Cyber-Physical layer...14
RUI at Informational Layer..15
RUI at Service Layer..15
RUI Evolution Handling...15

Emergence..17
Multi-level hierarchy...17
Emergence Explanation...18
Issues...19

Time and Clocks...21
Clocks..21

Unsynchronized local physical clocks..23
Global Time and Standards...24
Reasonableness Condition...24
Internal Synchronization...25
External Synchronization..25

Global Navigation Systems..25
Atomic clocks...26

Resilient Master Clock..26
Distributed Systems...28

Synchrony classification...28
Consistency models..29

Distributed Coordination...29
Causality...30
Lamport’s Logical Clocks...30
Vector Clocks..31

2

Consensus..33
Two phase commit (2PC)...33
Best-Effort Broadcast...33
Reliable Broadcast..34
Uniform Reliable Broadcast...34

Failure Detectors...36
Consensus using Class S...37
Consensus using Class ♦S...38
Early Consensus..39

Timed Asynchrony..40
Rotating leadership...42
Consensus...43

Blockchain...44
Bitcoin Proof of Work...44
Ethereum Proof of Work...45
Proof of Stake...45

Chain-based PoS..46
BFT PoS...46

Proof of X...47
Practical BFT (PBFT)...47

Real Time Systems...49
Classification...49
Temporal requirements..50
Architecture...50
Scheduling...51

Earliest Due Date..52
Earliest Deadline First..52
Cycle Executive..53
Rate Monotonic..53
Execution Time Analysis..54

3

Foundations

Computing Evolution

Industry 4.0

1. First Industrial Revolution (1800): mechanization, water and steam power

2. Second Industrial Revolution (1900): mass production, assembly line, electrical energy

3. Third Industrial Revolution (1970) : computer automation, electronics and IT

4. Fourth Industrial Revolution (today) : cyber-physical systems

Mainframe computing (60’s-70’s): large computers to execute data processing applications.

Desktop computing (80’s-90’s): one computer at every desk to do business and personal activities.

Ubiquitous computing (00’s): numerous computing devices in every place. Invisible part of the
environment. Millions for desktops vs billions for embedded processors.

Cyber-Physical Systems (10’s): systems able to interact with the surrounding physical world.

Example of applications of CPS are environmental control, electricity and natural gas distribution,
physical infrastructure monitoring and control (e.g. railway systems).

Monolithic Systems

Starting from mainframes, computers were usually characterized by distinguishable services that are
not clearly separated in the implementation. Rather than containing separate components they are
interwoven into a singular, monolithic system.

A System of Systems stems from the modular integration of existing legacy systems and new systems
that have been designed to take advantage of this integration. The components are normally operated
by different organizations (example: smart metering infrastructure includes legacy smart meters).

Characteristic Monolithic System of Systems

Scope Known Unknown

Clock Synchronization Internal External

Structure Hierarchical Networked

Requirements and Specs Fixed Changing

4

Evolution Version Control Uncoordinated or Managed

Testing Test Phases Continuous

Implementation Technology Given and Fixed Unknown

Faults Exceptional Normal

Control Central Autonomous

Emergence Insignificant Important

Development Process Model Independent for each Component

SoS Viewpoints

Most of the cost of SoS development is in the engineering phase, the hardware requirements relatively
cheap. Reduction of cognitive complexity of large systems has thus great economic significance,
reducing the probability of design errors.

Cognitive-Complexity: how much mental effort is required to understand a given scenario for the
given purpose by the average user of a group. Understand the behavior of a system means that a
mental model that establishes causal links between: observable inputs, state, observable outputs of a
system has been formed.

A SoS can be difficult to be analyzed as a whole, thus the main characteristics are summarized as
viewpoints:

• Fundamental concepts: definition of SoS and related parts.

• Time: time management and its role.

• Data and State: information exchanged between the parts. Representation and Metadata.

• Actions and Behaviour: the dynamics. Event-based view or state-based viewpoint.

• Communications: protocols and role.

• Interfaces: the means that allows the components to interact.

• Dynamicity and Evolution: short term (dyn.) and long term (evol.) changes.

• Design and Tools: architecture and dynamic behavior design methodologies

• Dependability and Security : confidentiality, integrity, safety, availability and reliability

• Emergence : novel behaviors that manifests only when considering the system as a whole.

5

Core Concepts

Interval of Discourse (IoD): time interval of interest.

Universe of Discourse (UoD): set of entities and relations among the entities that are of interest when
modeling the selected view during the IoD.

We must identify the objects that have distinct and self-contained existence in the UoD during the IoD.

Entities: objects that have a distinct and self contained existence:

• Thing: a physical entity, adhering to physical time and belongs to physical space.

• Construct: product of human mind, adhering to a discrete time-base, belongs to cyber space.

System: entity capable to interact with the environment and sensitive to progress of time. The same
system can react differently depending on the environment or time.

Environment: entities that are not modeled as part of a system but can interact with the systems.

System boundary: dividing line between a system and environment or another system. In SoS this
boundary is not well defined and may change frequently over time. CS comes and go from the system.

System Architecture: blueprint of a design that establishes the overall structure, the major building
blocks and the interaction between these major blocks and environment.

Autonomous System: a system that tries to achieve its objectives, and provide its services, without
guidance by other system.

Constituent System (CS): an autonomous system that is part (subsystem) of a SoS.

A CS is itself a system, and thus can itself be dissected into sub-CSs. The process is recursive and
terminates when the internal structure of a subsystem is of no further interest (atomic components).

Cyber-Physical System (CPS): a system consisting of a computer system (cyber), a controlled object
(physical) and possibly interacting humans.

• Cyber: computation, communication, and control are discrete, logical and switched.

• Physical: systems governed by the laws of physics and operating in continuous time.

Interacting human can be:

• prime mover: interacts with the system according to his/her own goal.

• role player: acts according to a given script and shall be stimulated.

6

CPS Entourage: parts of the system that are external to the cyber part, i.e. physical parts and
interacting humans.

System of System (SoS): integration of a finite number of CS which are independent and that are
networked together for a period of time to achieve a certain higher goal. System boundaries are thus
defined only for a period of time and, potentially, the SoS may exist only during the IoD.

SoS classification:

• Directed: central managed purpose and ownership for all CSs (e.g. micro kernel).

• Acknowledged: independent ownership of CSs but aligned purpose (e.g. smart grid).

• Collaborative: independent ownership of CSs and individual purposes (e.g. a horde).

• Virtual: lack of central purpose and alignment (e.g. cars traffic).

Data and State

Data: artefact created for a specific purpose. In cyber-space it is a bit-string needing an explanation to
arrive at its meaning (the information).

Information: a proposition about a state or an action in the world, is composed by two data elements:

• object-data: the payload.

• meta-data: payload explanation.

State: the totality of information from the past, at a given instant, that can have an influence on the
future behavior of a system. State concept is meaningless without the concept of time.

State Space: totality of all possible values of the state variables.

Actions and Behavior

We can observe the dynamics of the system that consist of discrete variables.

Event-based view: observe values of every state variables at the beginning, record all events and
timestamps in a trace. The amount of data generated by the event-based view cannot be bounded.

State-based periodic view (Sampling): observe the relevant state variables at sampling points.
Granularity of sampling is important, we can loose configurations but data is bounded.

Execution Time: time required to execute an action on a system.

An action can be: time triggered and event triggered.

Function: mapping of input data to output data.

7

Behavior: timed sequence of effects of input and output action that can be observed at an interface of
a system. Behavior is deterministic if given a set of inputs at a defined instant the future outputs can be
predicted. Service: the intended behavior of a system that can be exploited by an user.

Communication

A SoS cannot exist without transfer of information between its CSs.

Communication happens with transport of messages from a sender to one or more receivers. Transport
should have high dependability and short duration.

Communication protocol: set of rules that govern a communication action.

Message: data structure used to exchange information.

• Datagram: a best effort message (sporadic)

• PAR: Positive Acknowledgment or Retransmission (sporadic)

• TT: Time Triggered, error controlled transport service for transmission (periodic)

Stigmergy: information exchange via changes in the environment. The coordination is not direct, the
trace left in the environment by an action stimulates the performance of the next action by the same or
different agent.

Environment Dynamics: autonomous environment processes, not explicitly modeled as CS, that cause
the change of state variables in physical environment.

Interfaces

Points of interaction of systems with each other and environment over time.

Interaction: exchange of information at connected interfaces

Channel: a logical or physical link that transports information among systems through their connected
interfaces.

Relied Upon Interface (RUI): interface of a CS where the services are offered to other CSs. Are the
interfaces used to form the SoS.

• RUPI: physical interface for things/energy exchange.

• RUMI: cyber interface for message exchange.

• RUS: cyber interface for service exchange.

Time Synch Interface (TSI): enables external time synchronization to establish a global time-base.

Utility Interfaces : configuration (C-Interface), diagnose (D-Interface), monitor and update the system

8

Dynamicity and Evolution

Dynamicity (short term changes): capability to react promptly to changes in the environment.

Example: accidental blockchain fork.

Reconfigurability: capability to adapt internal components to mitigate internal failures or improve
service quality.

Evolution (long term changes): process of gradual, progressive change. Primarily resulting from
environment changes. In SoS context means maintaining and optimizing the system.

• Managed: process of modifying the SoS to keep it relevant. Usually the process is under the
control of an Authority to avoid unwanted emergent behaviors. Example: blockchain hard fork.

• Unmanaged: modification occurring as a result of and independent changes in some of its CSs.
Example: faster internet node.

Authority: association with the right to demand for managed changes in order to keep the SoS relevant
to stakeholders. Authority establish RUI specifications and how changes for evolution are rolled out.

Design and Tools

From conceptual thoughts to requirements and architecture design.

Design: process of defining an architecture, components, and interfaces that satisfy the requirements.

Modularity: technique to build large systems integrating simpler and reusable modules.

A good design is needed to have a component that it is:

• Evolvable: modifiable to be used in new contexts.

• Flexible: can be adapted to future contexts.

• Robust: performs well under different environments.

• Testable: can be easily tested.

Dependability and Security

Threat: circumstance or event that potentially impact an organization operations, assets, individuals
via unauthorized access, destruction, disclosure, modification of information or denial of service.

Vulnerability: weakness in a system design or implementation that could be exploited and that may
originate a threat.

Risk: a measure of the extent to which an organization is threatened. The likelihood and the impact.

9

Threats

• Fault: can be an internal defect in the system or an external fault (cause by external failure).

• Error: a fault that is activated, can propagate through components.

• Failure: an error that reach the system boundary, i.e. the service interface.

Security Attributes

• Confidentiality: absence of unauthorized disclosure of information.

• Integrity: absence of improper system state alterations.

• Authenticity: the guarantee of the identity of the information creator.

• Non repudiation: the information creator cannot deny its actions.

Dependability Attributes

• Availability: readiness for service.

• Reliability: continuity of service.

• Safety: absence of catastrophic consequences.

Robustness: dependability with respect to external faults.

Means to improve dependability with respect to faults:

• Forecasting : estimate the number, the future incidence and consequences.

• Prevention: prevent occurrence or introduction of faults (e.g. unit testing).

• Removal: means to remove faults after introduction.

• Tolerance : avoid service failure in presence of faults, restore stable system state.

Emergence

A phenomenon of a whole at the macro-level is emergent if and only is is of a new kind with respect to
the non-relational phenomena of any of its proper parts at the micro level.

An Emergent phenomena can be: either expected or unexpected, beneficial or detrimental.

10

Interfaces

Advances in telecommunications and automation allowed integration of previously isolated systems .

Central to the integration of CPS are their interfaces, points of interaction of CSs within each other and
the environment.

Key challenges:

• Identification of proper interfaces.

• Proper specification and standardization of interfaces.

• Managed modification of interface specifications.

Time plays an important role, especially for appearance/avoidance of emergent behaviors.

Many attributes of interest in SoS, we focus on behavioral attributes, i.e. interactions among
architectural elements of SoS.

Architectural Elements:

• Itom (object data + meta data) : unit of interaction.

• Component System: Itom processing entity that exchanges Itoms with its environment.

• Environment: all entities a CS can interact with.

Itom : “timed proposition about some state or behavior in the world”.

Can be sent as object data of another Itom (recursive structure), avoids misinterpretation of
information, enable information context independence.

Constituent System: is a CPS composed of cyber part (digital machine adhering to discrete
progression of sparse digital time), a physical part interacting with environment via sensors/actuators
and eventually humans (adhering to the progression of dense physical time).

Proper integration of physical and digital time is essential.

Interface specification: defines the CS’s interface capabilities, the purpose is realization of CPSoS
emergent services.

Computer System of CS processes Itoms according to the Interface specification, exact details of
implementation are irrelevant/hidden.

In physical space Itoms are sent via actuators and received via sensors to and from the CS entourage.

In cyber-space Itoms are sent and received as (timestamped) messages.

11

Environment: entities and actions that are not part of the system but have the capability to interact
with the system. Distance is fundamental for interactions (force fields).

Cyber Environment is a distributed Itom processing system (e.g. IP based Internet). Message based
communication via both direct and indirect channels (e.g. shared memory over cyber space). Shared
memory is subject to cyber-dynamics, time sensitive autonomous processes acting on cyber data.

Physical Environment consists of things and physical fields. Properties can be modeled as a dynamic
network of physical state variables described by environmental model. Subject to environmental
dynamics: time sensitive autonomous processes acting on physical state variables. Actuators write state
variables, sensors read state variables.

CS Entourage: all the physical things interacting with the CPS, allows stigmergic information flow.

Layers

Enable discussion of interface properties and their definition in interface specificatios.

Cyber-physical interface layer

Level of messages and things/energy. Interactions realized by concrete tech and sensors/actuators. Too
much detailed (low level) to study SoS properties (e.g. emergence, evolution, dynamicity). At lowest
level even cyber interactions are realized by physical interactions. Interface details in the CP-Spec
composed by M-Spec and P-Spec (properties of sensors/actuators e.g. sample rate).

Physical Interface

Itoms represented by a bit-pattern, explanation deduced by placement of sensors/actuators and design.

P-Spec and environmental model allows simulation of stigmergic channels.

After sampled raw-data has been refined into an Itom, the raw data becomes irrelevant.

Cyber Interfaces

Produce and consume messages according to M-Spec, consisting of: transport specification (properties
of messages at transport level), syntactic specification, semantic specification. Can be structured as
ports (channel endpoints) where messages are placed and fetched.

12

Informational interface layer

Level of Itoms. Abstracts the low level information origin and technology (cyber or physical
irrelevant). I-Spec: Itom types, temporal, security and dependability properties.

E.g. emergency breaking of a car at CP level can be realized by a stigmergic channel (break light in
front and human operator behind) or by M2M cyber channel. But the Itom at information level is the
same.

Communication can be direct or indirect. In indirect communication environmental and cyber
dynamics should be considered. If there is an indirect communication, interacting channel can be
modeled by an Environmental CS (ECS) that apply environment-dynamics to the Itoms flow. A
system which effect is considered environmental dynamics can not be modeled explicitly.

The informational interface is the most suitable layer to study emergence, dynamicity and evolution.

Frame-based Sync Dataflow Model (FSDM)

Interface specification does not describe the behavior or CS environment itself. Is needed an
appropriate execution semantic. FSDM is employed to model from design to analysis dependable
distributed RT systems. Offers a semantics for study behavioral properties of CPSoS at informational
layer.

Dense time segmented in frames (periods) consisting of:

• Synchronization: write output and read input to/from environment.

• Processing: calculate next state and output from input and current state

Frame duration is short enough such that system appropriately reacts to changes in the environment
(e.g. keyboard 50 ms, car crash sensor 1ms).

Service interface layer

System behavior structured as capabilities, by eventually grouping sub-Itom channels. Abstracts
individual information channels. E.g. database service is composed of request/response Itom channels.

S-Spec: set of quality metrics to allow independent observer to determine quality of provided service.
Providers offers capabilities under a Service Level Agreement (SLA).

Service-oriented architecture (SoA)

Building blocks: providers, consumers and brokers.

Principles:

13

• registry: repository of service specifications (S-Specs);

• discovery: service consumers match their requirements with the registry;

• composition: multiple services are integrated into a new, higher level, service;

• abstraction: implementation of a service are unimportant (black box);

• stateless: providers don’t maintain a context for each consumer (easier switch)

Different from modularity: SoA is more about how to compose an application by integrating
distributed, separately-maintained and deployed software components.

Implementation: SoA can be implemented with Web services to allow uniform access over ubiquitous
Internet protocols that are independent of the platform. Examples: SOAP, CORBA, REST. Others view
the realization of SoA in SaaS, PaaS and cloud computing in general.

Criticism: SoA has been conflated with Web-services, however, Web services are only one option to
implement the patterns that comprise the SOA style. In the absence of native or binary forms of remote
procedure call (RPC), applications could run more slowly and require more processing power,
increasing costs. Most implementations do incur these overheads, but SOA can be implemented using
technologies that do not depend on remote procedure calls or translation through XML.
Further services may belong to different (even competing) organizations creating a huge trust issue.

Relied Upon Interface

RUI : CSs interfaces used to provide emergent CPSoS services.

Time-Sync Interface (TSI) : realize sparse global timebase.

Utility Interfaces : C-Interface (configuration) and D-Interface (diagnostic).

Short-term changes (dynamicity) need to be considered in RUI specification, long-term changes
(evolution) affect how RUI specifications are updated.

RUI at Cyber-Physical layer

RUMI: direct or indirect (e.g. may be subject to cyber/environment-dynamics)

RUPI: overlapping entourage allows stigmergic information flow. All interactions are indirect.

14

RUI at Informational Layer

Abstracts the underlying type (RUMI/RUPI) and thus the concrete implementation technology.

This layer simplifies the global system view abstracting from the lower layers technology.

Context sensitivity by using explicitly defined Itoms (data and metadata).

Focus on direct and indirect information flow among CS. Indirect channels modeled by the
instantiation of an additional Environment CS (ECS).

If the implementation shows a different emergent behavior with respect to the model, then then there
are possible hidden channels in the lower layer. A Hidden channel is a latent information flow among
CSs not considered in the model.

RUI at Service Layer

RUS: relied upon service. Described in the S-Spec.

RUS is a behavioral abstraction over one or more unidirectional Itom channels (group together Itom
channels) and specifies interaction pattern, i.e. the sequence of operation related Itoms.

An emergent CPSoS service is modeled as set of dependencies of required RUSs. Required RUSs must
be provided by a CS that wants to benefit from emergent CPSoS service. CSs doesn’t need to provide
RUS directly, can use composition of the RUSs provided by other CSs.

SLA: Service Level Agreement

RUI Evolution Handling

Design modifications triggered by changes in environment: e.g. advances in tech or business needs.

Increase CPSoS business value, retro compatibility and prevent obsolescence.

Unmanaged evolution: no guidance and central purpose. CS owners freely change their CSs.

Managed evolution: orchestrated by an Authority to supervise the operation. Appropriate for directedm
acknowledged and collaborative SoS.

The Authority may introduce changes in the RUI while maintaining retrocompatibility. Has the
capability to incentivate the adoption of a changed RUI specification and to select appropriate
standards. Is usually composed by key CPSoS stakeholders (e.g. CS manufacturers and governments).

The authority can authorize and publish RUI specifications.

A minor evolution step affects only the cyber-physical layer, a major evolution step affects the
informational and service layer (more likely to introduce detrimental emergence).

15

If emergence manifests in a minor evolution step then there were a latent hidden channels that we’ve
not considered in the higher level layers.

In time-aware CPSoS the global timebase can be used to temporally coordinate the execution of
evolutionary steps. Can be useful a dormant period before restart the CSs to be more confident about
the alignment.

16

Emergence

“The Whole is Greater than the Sum of its Parts” Aristotele

Emergent phenomena: a phenomena of a whole at the macro-level is emergent if is of a new kind
with respect to the parts at the micro level.

While we design our SoS we want to predict emergent behaviors and manage their appearance.

Emergence attributes

• Domain: structure, behavior, properties.

• Predictability: unpredictable, stocastic, deterministic.

• Explanation: none, in principle, by simulation rules, by analytic rules.

• Consequences: positive, none, negative.

Multi-level hierarchy

Understand huge amount of information requires an appropriate modeling structure. One modeling
technique is a recursive structure called multi-level hierarchy. At the level of interest an entity, the
whole can be dissected into a set of sub-systems, the parts. Focusing on the lower level, each of these
parts can be viewed as a whole itself. Lowest layer constituent is called a component or elementary
part.

Each level possesses its unique laws, the phenomenon of emergence is always associated with levels of
a multi-level hierarchy.

Holon: a two faced character of an entity. Considered a whole at the macro level and an ensemble of
parts at the micro level. (Greek origin “holos” means all and “on” means part). At the macro level the
holon is accessed via interface while at micro level the parts are confined and interacting.

Emergent behavior is mainly associated with control hierarchies and causal loops.

Control hierarchy. The macro-level must on one side constrain the freedom of the behavior of the
parts but on the other side abstract from it, thus allowing some degrees of freedom (no control means
chaos, absolute control means determinism).

17

Sources of control:

• authority from outside: at the same level, an outer dedicated entity controls the components.

• authority from inside: the higher level is equipped with causal powers so that it can inflict
effects on the lower level that is causing it (causal loop).

Causation.

• Upward-Causation: interaction of parts at micro level cause because of the laws of physics or
imposed rules, the whole at macro-level.

• Downward-Causation: the ensemble of the parts (the whole) constrains the behavior of the
parts at the micro-level resulting in a causal loop.

A very likely causal loop source can be searched among hidden stigmergic channels.

Conjecture: in a multi-level hierarchy emergent phenomena can only appear if there is a causal loop.
Linear cause-effect relations cannot explain emergent phenomena.

Supervenience. Relation between the emergent phenomena of adjacent levels in a hierarchy.

• Sup-1 : a difference in the parts may give the same emerging phenomena.

• Sup-2 : a difference in the emerging phenomena requires a difference in the parts.

Macro-level-diff → Micro-level-diff (the inverse doesn’t hold)

Because of Sup-1, we can abstract from many of the components details greatly simplifying the
modeling and engineering of the system.

Example of Sup-1: A transistor is internally unique but its holon is equal to the other transistors.

Types of interactions:

• physical: synchronic interactions characterized by distance, frequency and force fields. Moving
up in abstraction hierarchy the distance increases thus force fields and frequency decrease.

• informational: diacronic exchange of Itoms across messages or stigmergic channels. Emergent
behavior are caused by this type of interactions.

Emergence Explanation

At the macro level new laws may be introduced to be able to describe the phenomena appropriately.

Inter-ordinal laws (bridge-laws) to relate established laws at micro-level with the new concepts.

Proper conceptualization of emergent phenomena can lead to an abrupt simplification at the next higher
level. For example, the classical mechanics laws can be said to emerge as a limiting case from the
quantum mechanics laws applied to large enough masses. Quantum mechanics is generally thought as
more complicated than classical mechanics but new rules that simplify are introduced.

18

Some philosophers take as emergent only phenomena that cannot be explained (not reducible to) the
state of knowledge about properties and laws that govern the parts at the micro-level. But what
constitutes an acceptable explanation? And what is the reference for the state of knowledge (can be
subjective and changes over time). Thus, from this perspective a phenomena can be emergent only for
some persons or in some moments in time.

Scientific explanation (Reductionism). Given statements of the antecedent condition and general
laws then a logical deduction of the description of the empirical phenomenon to be explained is
entailed.

General laws are universally valid while rules are structure dependent and local. Special case are
imposed rules (e.g. a game).

Examples of e xplained Emergence.

Deadlock: novel phenomena is “permanent halt”. Downward causation is realized via indirect
information transfer via the semaphore variables, is not predictable because of indeterminism in task
execution. Best programming practices to avoid it in the single programs (components).

Fault Tolerant Clock: novel phenomena is “tolerance of clock failures”. Downward causation: the time
average of the ensemble of clocks inflicts a state correction to a local clock. The frequency of a
physical oscillator cannot be changed (upward causation).

Game of Life: Glinder movement along the diagonal is an emergent phenomena.

Awareness. With proper observation and documentation of interactions between the CS the
occurrence of emergent phenomena in SoS can be predicted and (hopefully) explained. Sometimes is
difficult, or impossible, to have complete awareness during SoS design (e.g. system boundaries are not
fixed). Unexpected emergence is caused by ignorance about: behaviors of each CS, possible side
channels among CS, impact of the environment.

Issues

CPSoS Design model may not take into account emergent effects that cause a deviation from the
intended behavior. Emergence is diachronic (develops over time) thus a continuous observation of the
system behavior is important in safety-critical SoS systems. Detect the start of anomaly e.g. via pattern
matching.

Legacy CS may come with unknown development faults, bugs, vulnerabilities. Their specifications
may be incomplete or incorrect. Integration in a SoS may cause unexpected emergence.

19

Emergent phenomena are caused by interactions among CS that close a causal loop such that the whole
affects the behavior of an individual part at the micro-level. (e.g. the fault tolerant clock is composed
by the CS clocks that exchange info using messages, the FT clock influence the single clocks to
synchronize them).

To detect actions that lead to emergence expose all information flow channels, search for causal loops,
identify capacity limits, look for patterns. When an unexpected emergent behavior is detected, is
important to find a proper rational explanation and identify the side channels.

Modern detrimental example: Meltdown Intel exploit.

20

Time and Clocks

Systems are, by definition, sensible to the progression of time, thus changes in a SoS depends on time.

In SoS a global notion of time is required in order to synchronize the CS to achieve the objectives (e.g.
conflict-free resource allocation, security protocols, real time data limits, etc.)

Time. A continuous measurable physical quantity in which events occur in a sequence proceeding from
the past to the future.

Timeline. A dense directed line denoting the progression of time from past to future.

• Instant: cut on the timeline (totally ordered).

• Event: a happening at an instant (partially ordered).

Interval. Segment on the timeline between two instants.

Events order:

• Temporal: depends on the happening instant.

• Causal: depends on the cause-effect relationship among events.

Events are only partially ordered, since simultaneous events are not in the order relation. Can be
totally ordered by introducing a criterion to order simultaneous events (e.g. id of the node where the
event occurred).

Cycle: sequence of events that once arrived at a final state restarts from the initial state.

Period: a cycle with constant duration between start states.

Clocks

A clock is a device that contains a counter and increments this counter periodically.

Digital Clock: autonomous system that consists of an oscillator and a register. When the oscillator
completes a period an event (tick) is generated that increments the register value.

Reference Clock: hypothetical clock with granularity smaller than any duration of interest.

Coordinated Clock: synchronized within stated limits to a reference clock that is spatially separated.

21

Clock granularity: reference clock ticks between any two consecutive ticks of the clock.

For example: if between two clock ticks there are 100 reference clock ticks and the reference clock has
a granularity of 1 ms, then the clock has a granularity of 100 ms.

Nominal frequency. The desired frequency of an oscillator.

Individual clock frequency can deviate from nominal frequency.

Frequency Drift. Phenomena where clock does not run at exactly the same rate as a reference clock.

Given Hzr and Hzc the frequencies of the reference clock and the clock c, respectively:

Drift = Hzc /Hzr

If the clock c has highest frequency than the reference the drift is > 1.

Drift rate = | Drift – 1 |

Real clocks have drift rates from 10−2 (poor quality) to 10−8 (high precision quartz clocks).

Drift is due to aging, changes in the environment and other factors external to the oscillator.

Wander. Long-term phase variations of the significant instants of a timing signal from their ideal
position on the time line (variations frequency less than 10 Hz).

Jitter. Short-term phase variations of the significant instants of a timing signal from their ideal position
on the time line (variations frequency greater than or equal to 10 Hz)

The offset of clock c with respect to the reference clock r at tick i is called the accuracy. The
maximum offset over all ticks is called the accuracy of the clock.

The difference between the times of two different clocks is called clock skew (offset).

Given an ensemble of clocks the maximum skew between any two clocks of the ensemble is called the
precision of the ensemble of clocks.

The process of mutual synchronization of an ensemble of clocks in order to maintain a bounded
precision is called internal synchronization.

The process of synchronization with the reference clock is called external synchronization.

22

If all clocks of an ensemble are externally synchronized with an accuracy A, then they are internally
synchronized precision is at most 2A. The opposite is not true.

α = accuracy

π = precision

Accuracy is paramount for clock alignment with the reference
clock. A high precision clock ensemble can drift together from
the reference clock.

Given an ensemble of clocks with a drift rate of δ , to maintain a precision of at least π we shall
synchronize the ensemble clocks with the reference clock at least every π / 2δ .

Unsynchronized local physical clocks

Local time references and timestamps can only related if they originate from the same clock.

Assuming local clocks have a bounded drift rate, using time chains distributed durations can be
approximated without explicit existence of global clocks.

For example, we want to evaluate the transmission delay of a message m1 , D(m1)

Process q knows Δq=T q 1−T q 0 (Round Trip Time)

Process p knows Δp=T p1−T p 0 (Execution Delay)

Process p sends Δp with m1

We know that d0≥D(min) , the minimum message delay

So D(min)≤ D(m1) ≤ Δq−Δp−D(min)

with D(min)≤ (Δq−Δp)/2

The error is between 0 and G=D(max)−D(min)

The idea is used by both the Christian’s algorithm and NTP for clock synchronization.

23

Global Time and Standards

In a distributed system, local clocks are synchronized in order to generate a common notion of time, a
global time in the distributed system. Such global time is an abstract notion that can only be
approximated by the clocks in the nodes.

A dependable global time is required to measure duration between events that happens in systems with
autonomous oscillators. For example to measure how much time a message takes to go from one node
to the other.

A SoS global time enables the interpretation of timestamps in different CS in order to:

• Limit validity of RT control data

• Synchronization of IO actions across nodes

• Specify temporal properties of interfaces

• Perform prompt error detection

• Strengthen security protocols

• Conflict free resource allocation

• Reach consensus

UTC time standard is aligned to day duration (one day is 86400 seconds). Since the earth rotation is
not so exact, a leap second should be introduced approximately every 3 years.

TAI time is similar to UTC but is instead a chronoscopic timescale, i.e. monotonic with no introduced
leap seconds. The 1st January 1958 TAI time was started as equal to UTC.

Reasonableness Condition

Given:

G the global time granularity (macrotick granularity).
Π the precision of the clock ensemble

The global time t is called reasonable, if all local implementations of global time satisfy the
reasonableness condition: G>Π .

The condition ensures that the synchronization error is bounded to less than the duration between two
macroticks. If the condition is respected by all network nodes, the timestamps of an event detected in
parallel by multiple nodes can differ at most by one tick. If the timestamps of two events differ by at
least two macroticks, the temporal order of the events can be reconstructed.

An interval is delimited by two events: start and terminating event.

24

Given D(obs) the difference between the start event observed by one node and the terminating event
observed by another node, if the reasonableness condition is respected, the true duration D(real) of an
interval is bounded by 2G:

| D(real) – D(obs) | < 2G.

Internal Synchronization

In synchronous systems clock synchronization is performed sending the time t from a reference server.

Given known message transmission delay upper and lower bounds, the receiving node sets its clock as

 c = t+(max-min)/2

We thus have a max skew of (max-min)/2.

Popular protocols for asynchronous systems:

• Cristian’s Protocol

• Network Time Protocol (NTP)

External Synchronization

Possible if the system has access to an external time reference.

GPS is an important time source that gives synchronization accuracy in the sub-microsecond interval.

External and internal clock sync are complementary: fault tolerant internal sync provides high
availability and short term stability; external sync provides high reliability and long term stability.

A dependable clock shall posses both the characteristics.

Global Navigation Systems

To determine the position Global Navigation System uses triangulation, in space.
s⃗= v⃗ t

The radio signals sent by the satellite travel at the speed of light: ~300,000,000 m/s

We have to measure the travel time of the signal.

Both the Receiver and the Satellite “sing” the same “song”: a pseudo random noise. The receiver, is
thus able, when it receives the signal to determine the time that the satellite signal has taken to reach
the receiver.

To allow the receiver to discriminate between different satellites, every one “sings” a different song.

We can deduce the position if we are listening to at least 3 satellites (triangulation in space).

25

Global navigation systems clock signal is broadcasted continuously.

Possible attacks against GNS: jamming, meaconing and spoofing.

Meaconing is the interception and rebroadcast of navigation signals. These signals are rebroadcast on
the received frequency, typically, with power higher than the original signal, to confuse enemy
navigation. Consequently, aircraft or ground stations are given inaccurate bearings.

Large infrastructure SoS already use GPS clock signal for CS clocks synchronization. A defect in the
value would seriously compromise the security of the SoS. The number of systems relying on GPS
clock increases without considering loss-of-signal consequences (no fallback system). Requirement for
a Resilient Master Clock emerges.

Reference: Local clock synchronization via NTP through GPS PPS.

Atomic clocks

An atomic clock works like a conventional clock but the time-base of the clock, instead of being an
oscillating mass as in a pendulum clock, is based on the properties of atoms when transitioning
between different energy states.

An atom, when excited by an external energy source, goes to a higher energy state. Then, from this
state, it goes to a lower energy state. In this transition, the atom releases energy at a very precise
frequency which is characteristic of the type of atom. This is like a signature for the type of material
used. All that is needed for making a good clock is a way of detecting this frequency and using it as an
input to a counter.

A GPS satellite has onboard at least two caesium and two rubidium atomic clocks. Rubidium is less
accurate but is more stable than caesium.

Resilient Master Clock

Low power consumption, low weight and low cost clock able to provide correct time in absence of
GNSS signals. Includes an independent oscillator, GPS receiver, Commercial Off-the-Shelf (COTS)
sensors and software clock control techniques devised to provide self estimation of clock quality.

Extends the holdover duration by compensating the local clock deviation.

26

https://www.lammertbies.nl/comm/info/GPS-time.html

Hardware:

• GPS module: receive time messages from GPS constellation

• Sensors: acquire environment information such as temperature and pressure.

• Communication interface: for example a NIC.

• CPU, memory and physical oscillator: standard components of any hardware board.

Software:

• OS layer: maintains a local software clock.

• NTP: uses GPS acquired information to discipline local clock.

• CDC: Clock Drift Compensation generate a Pulse Per Second signal when the GPS is
unavailable. Compensation based on information from the sensors and priori knowledge of
frequency deviation caused by environmental changes on the oscillator.

• R&SA Clock: uses the offset obtained by the sync module to estimate the uncertainty of the
time provided by the local clock over time.

• Checker. Checks uncertainty output of R&SA clock before PTP broadcast.

• Master PTP: Precision Time Protocol master to synchronize clocks through the network.

27

Distributed Systems

“A distributed system is one in which the failure of a computer you didn’t even know existed can render
your own computer unusable.” Leslie Lamport

A distributed system is a system composed by a set of nodes, connected by a network, working
together and appearing as a single coherent system1.

Each machine depends on the others for its functionality.

These systems can be dynamic with nodes joining, leaving and failing.

A distributed system improves scalability, reliability and availability.

Main classification parameters:

• Synchrony degree: from synchronous to asynchronous.

• Failures types: crash, omission, value, timing, byzantine.

• Network characteristics: topology, reliability, assumptions.

A node is modeled as a state transition system (like FSM) having a finite number of possible states.
Furthermore, a node has a bunch of neighbors, can send/receive messages and do local computations.

Synchrony classification

A synchronous system is characterized by having a known upper bound to:

• message delivery delay;

• information processing speed;

• local clocks drift rate.

Mechanisms for fault detection can be easily implemented using timeouts. Unfortunately, in real
world, is not easy to maintain synchronous property over time in a large scale system. Variable or
unexpected working loads always cause asynchrony, thus total synchrony is ideal and valid only in a
probabilistic way.

An asynchronous system is characterized by the absence of at least one of the synchronous system
timing bounds. Often characterized by lack of assumption on time (time-free).

Asynchrony introduces non-determinism but has a better application portability.

1 The nodes work together to solve a common goal (managed, acknowledged, collaborative SoS)

28

Consistency models

Under strict consistency a write to a variable by any process needs to be seen instantaneously by all
the other processes. A distributed system with many nodes will take some time to propagate the
information, thus the model is impossible to realize with the current technology.

Linearizability is a correctness condition for shared objects that provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response.

In order to achieve linearizability, a system should guarantee there’s a “point of no return”, after which
the whole system commits to the new value and won’t go back to revert it. Moreover, this all appears
instantaneous, i.e. there’s no “flickering” period where two process reads two different values). This
requires absolutely zero clock skew between the machines.

Implementing linearizability in a distributed system might be difficult and expensive, so there exist
other useful models with weaker requirements, such as sequential consistency (FIFO), which states
that result of the execution of an operation set is the same as if all operations were executed in some
sequential order by all the concurrent processes.

This can be further relaxed with causal consistency, which specifies that only causally related writes
must have a particular order.

Distributed Coordination

Each machine in a distributed system has its own clock thus there is no notion of global physical time.

The n oscillators on the n computers runs at slightly different rates (drift), causing the clocks to
gradually get out of synchronization (skew).

Many real world applications require a shared global time. The timestamp of an event E, denoted as
T(E), is the event shared global time (physical or logical).

Global time solutions:

• Physical clocks synchronization. Periodic adjustment of each machine local clock to achieve a
known degree of accuracy. Within the bounds of the provided accuracy we can coordinate the
activities. Needed for RT CPS.

• Logical clocks. monotonic counters that allows to infer a relative order (partial or total)
between the events across the distributed system. Based on the causality relationship.

29

Causality

An event A is causally related to an event B, written A→B, if the event A may be the direct or indirect
cause of the event B.

Given T(E) the timestamp of an event E, if A→B then T(A) < T(B) (converse not true).

Causality relation implies the equivalent logical relation “happens-before” (converse not true).

Causal order is a strict order relationship:

• Irreflexivity: A→A doesn’t hold for any event.

• Asymmentry: if A→B then B→A does not hold.

• Transitivity: A→B and B→C then A→C

is a strict total order relationship if also the connex property holds:

• Connex: A→B or B→A hold

If not total the order is partial, meaning that not every event is causally related to another.

For certain applications, as long as timestamps obey causal order, we don’t need physical clocks
synchronization.

Lamport’s Logical Clocks

Each process Pi holds a monotonic counter T i used to assign events timestamps.

Rules for process Pi :

• Pi increments T i before any instruction execution or send event.

• Each sent message carries T i .

• When receiving a message from a process P j (containing T j), T i is set as max(T i ,T j)+1 .

Minor issue: Lamport’s clocks impose only partial order on the events set. That is, if two events are
not causally related then we are not able to establish if one happened before the other.

If two events are not causally related they are classified as concurrent events (A||B). Even if they were
not really concurrent, neither of the two influenced the other so it doesn’t matter which one come first.

a→b→c→d→f

e→f

e||a , e||b , e||c , e||d

30

For example, above T(e) < T(c) but they are not causally related. Also note that if A and B belongs to
two different nodes, T(A) < T(B) doesn’t imply that the local time of A is less than the local time of B.

Total order workaround. For certain applications, events total order is required thus we should
establish an order criteria for parallel events. One possible solution is, given A and B two events
happening at processes Pi and P j respectively, then:

T(A) < T(B) iff A→B or (A || B and i < j)

Major issue: If A→B then T(A) < T(B) but the converse is not true. In other words, given two events
timestamps T(A) and T(B), we are not able to establish if the two events are causally related.

Vector Clocks

Solve both the Lamport’s logical clocks issues by adding some extra overhead.

Allow to establish if two events are causally related by looking at their timestamps.

Every event among the processes has a unique timestamp value.

Suppose there are n processes, each process Pi has a vector V i of length n used to assign timestamps

to events. V i [j] corresponds to Pi ’s knowledge of latest event at P j .

Rules for process Pi :

• Pi increments the i-th element of V i before any instruction execution or send event .

• Each sent message carries V i .

• When receiving a message from a process P j (containing V j)

◦ V i [i] = V i [i]+1

◦ V i[k] =max(V i [k] ,V j [k]) for k≠i

Results:

• V i= V j iff V i [k] = V j [k] , for all k=1... n .

• V i≤ V j iff V i [k] ≤ V j [k] , for all k=1... n .

• V i < V j iff V i≤ V j and there exists k such that V i[k] < V j [k] .

• V i ||V j iff not V i≤ V j and not V j ≤ V i .

In practice there are only two possibilities:

• If V i<V j when the two events are causally related.

• If V i ||V j when two events are concurrent.

31

(1,0,0) < (2,0,0) ↔ A→B

(2,0,0) < (2,2,1) ↔ B→F

(0,1,1) < (2,2,1) ↔ E→F

32

Consensus

p-agreement problem. Given n entities with p entities proposing the same value.

• Strong majority : p= ⌊n/2⌋+1

• Consensus or unanimity : p=n

Necessary and used for building reliable and secure distributed applications and services. It allows two
or more entities to reach a common agreed decision starting from their initial proposed values.

Some important applications: leader election, blockchain, distributed database, virtual machines, etc.

Consensus properties:

• Termination: every process eventually decides.

• Validity: if a process decides for a value v, then v has been proposed by at least one process.

• Integrity: every process decides at most one time.

• Uniform Agreement: two process do not decide in a different way.

Two phase commit (2PC)

This is a specialized consensus algorithm that assumes a leader and is very used in simple distributed
databases contexts. Phases:

• Voting: participants dry-run of operations, return the run result.

• Commit: only if all votes are positives.

It is a blocking protocol. Participants blocked until a commit/abort is received from the coordinator.

However, if nodes are allowed to fail (even if a single node can fail) then things get more complicated.

The protocol requires the support of a reliable broadcast service.

Best-Effort Broadcast

Eventually delivers the messages ensuring that a message is not delivered more than once. Delivery
order is not contemplated. Guarantees message delivery only if sender is correct.

Assumes network reliability.

Properties:

• Termination: if a correct process broadcasts a message, then all correct participants will
eventually deliver it.

33

• Validity: if a process delivers a message then the message was previously broadcast by a
process.

• Integrity: no message is delivered more than once.

If the sender crashes before being able to send the message to all, some processes will not deliver the
message. Thus even termination property is not guaranteed.

Reliable Broadcast

If a sender crashes then all or none correct nodes gets the message.

Assumes network reliability.

Properties:

• Best Effort Broadcast properties

• Agreement. If a correct node delivers the message, then every other correct node delivers it.

Eager RB. Based on message diffusion principle; when a node receives a message it rebroadcasts it
and then, if the message has not already been delivered, it delivers it.

Lazy RB. Requires a Failure Detector with strong completeness.

Given a correct process Pi , two cases may happen:

1. Receives a message from P j , detects P j failure, re-broadcasts the message.

2. Detects P j failure, receives a message from P j , re-broadcasts the message.

The second case may happen because of unpredictable network latency.

Strong completeness is required because if some faulty process are not suspected (weak completeness)
the BC is not reliable. On the other hand, weak accuracy is sufficient because if some correct process is
suspected then only performances are affected (Eager RB is a Lazy RB where all nodes are suspected).

Uniform Reliable Broadcast

Properties:

• Reliable Broadcast properties

• Uniform Agreement: If a node delivers the message, then every other correct node delivers it.

Before delivering a message, a process forwards m to all processes.

In absence of communication failures, all correct processes will eventually receive the message and
deliver it. The proposed RB algorithm satisfies the URB requirements because of the “send before
deliver” strategy.

34

Broadcast Protocols Variants:

• FIFO: messages are delivered in FIFO order.

• Causal: delivery follows causality relationship (relaxes strict FIFO order).

• Atomic: messages delivered in the same Total Order.

Note the difference between FIFO and Atomic: FIFO requires that the delivery order is the same of the
sent order while the Atomic doesn’t impose any particular order. It just requires that the order is the
same for all the participants.

Atomic broadcast allows the implementation of state machine replication across distributed nodes.

Proposition. Atomic Broadcast is equivalent to Consensus.

Proof.

Atomic BC to consensus reduction. A value can be proposed by a process for consensus by atomically
broadcasting it, and a process can decide a value by selecting the value of the first message which
atomically receives.

Consensus to atomic BC reduction. A group of participants can atomically broadcast messages by
achieving consensus regarding the first message to be received, followed by achieving consensus on
the next message, and so forth until all the messages are delivered.

FLP (Fisher, Lynch, Paterson) impossibility result. There is no deterministic algorithm able to solve
the consensus problem in a asynchronous system which is able to suffer even only one crash failure.

(Reference paper: Impossibility of Distributed Consensus with One Faulty Process)

The FLP result applies even if we assume the network total reliability and the absence of Byzantine
fails. A simple node crash can jeopardize the entire system. The result bottom-line is that in
asynchronous systems is impossible to distinguish between a crashed and a slow process.

Atomic broadcast (and thus any consensus algorithm) can be resiliently performed only on
Synchronous systems.

Proposition. Consensus is solvable in synchronous system with up to N-1 crashes.

35

Failure Detectors

Failure types :

• Crash: a process stops working

• Omission: replies arrives infinitely late

• Value: incorrect values are sent.

• Timing: responses are provided too early or too late.

• Byzantine: nodes might behave arbitrarily.

The system has a distributed oracle, the failure detector, which provides information of possible
crashed nodes. Each process has access to a failure detector component that monitors the other nodes.

The module has a dynamic list of suspected crashed nodes. Two FD modules can have two different
lists in the same time.

The more synchronous is the system the more accurate the information provided. If is completely
synchronous, is possible to have a FD with perfect information.

Typical implementation

Periodic exchange of heartbeat messages, timeout based on worst case message RTT.

If timeout occurs then suspect the node. If receive a message from suspected node, revise suspicion and
increase timeout.

Completeness: every faulty node is eventually permanently suspected...

• Strong: by every correct process.

• Weak: by at least one correct process.

Is trivially possible to achieve strong completeness by suspecting every node.

Accuracy: every correct node never suspects...

• Strong: any correct node.

• Weak: at least one correct node.

Is trivially possible to achieve strong accuracy by don’t suspecting any node.

Eventual accuracy: there is a time after that we have strong or weak accuracy.

Because of the FLP result it is not possible to achieve strong completeness and strong accuracy in an
asynchronous system.

36

Failure detectors can be partitioned in different classes depending on the Completeness and Accuracy.

 Accuracy
Completeness

Strong Weak Eventually Strong Eventually Weak

Strong Perfect (P) Strong (S) Eventually Perfect (♦P) Eventually Strong (♦S)

Weak Quasi Perfect (Q) Weak (W) Event. Quasi Perfect (♦Q) Eventually Weak (♦W)

FD with Perpetual Accuracy: P, Q, S, W

FD with Eventual Accuracy: ♦P, ♦Q, ♦S, ♦W

FD with perpetual accuracy solve consensus in asynchronous systems with no limits on the number of
failed processes, while FD with eventual accuracy require a majority of correct processes.

If we find a reduction algorithm that transforms a FD A into another FD B then any problem that can be
solved by B can be solved by A. Follows that B is weaker than A (A≥B).

♦W is the weakest FD capable to solve the consensus problem in asynchronous systems.

Consensus using Class S

Characterized by:

• Strong completeness: all failed process are eventually permanently suspected.

• Weak accuracy: at least one correct process is never suspected by any other.

There exist at least a node that is suspected suspected iff is really crashed.

Algorithm (time-free)

Composed of three phases.

1. Each correct process executes n-1 asyncronous rounds in each of which broadcasts a vector
containing the proposed values collected so far and then waits to receive the vector from any

37

other process which is not in its FD. In case that a process p waits for a message from q and q
enters its FD list then it pass to the next node.

2. Each correct processes agree on a vector based on everyone proposal. The i-th position contains
the value proposed by process i or the null value (vectors intersection).

3. Each correct process decides for the first non null value in his copy of the vector.

Because of weak accuracy there is at least one correct process that is never in the FD list of any other
process, and thus a process that will send its proposal on each round.

If a process c is one correct process that never enters the others FD list and V p is the process p vector

then for an arbitrary correct process p:

• At the end of Step 1 V c≤V p

• At the end of Step 2 V c=V p

The two propositions can be formally proven.

Consensus using Class ♦S

Possible if the maximum number of processes that may fail is less than half of the totality of processes.

Based on the leader rotation paradigm. During round r the leader will be process (r mod n)+1 .

If the chosen leader is in the FD then is skipped. The communication happens between the leader and
the other processes. Every correct process performs in its turn the role of coordinator to determine a
value that can be chosen among the various proposals. If the coordinator is correct and is not suspected
by the correct processes then it will succeed in identifying such a value and will then perform a
reliable broadcast of such value.

Four phases:

1. Each process sends to the leader its own estimate of the value that should be decided (its
proposal) with a timestamp indicating the round in which such an estimate has been taken.

2. The leader collects the majority of such estimates, selects the one with the biggest timestamp
and sends it to every process proposing it as the new estimate.

3. Each process p has two possibilities:

1. checking the FD module suspects the crash of the leader and send a nack to it.

2. sends to it an ack to indicate its adoption of the suggester value;

4. The coordinator waits: (n+1)/2 responses (ack o nack).
5. If all the responses are positive the coordinator knows that a majority of processes has changed

their estimation adopting the proposed value, consequently it sends (through an R-Broadcast)
the request to decide according to this result, which is then done by every process when
executing the R-delivery of such proposal.

38

Early Consensus

Alternative to class ♦S consensus. Rotation of the leader but message exchange is simplified.

The leader proposal is not followed by ack/nack to reach a decision. If p receives a value v, it forwards
it to every other process. By doing so, if p receives the same value from the majority of the processes
the decision is already taken. If the coordinator is not suspected the protocol terminates directly at the
first round.

If the coordinator crashes or is suspected by a majority of the processes, all the processes move to the
next round after having updated the estimates, ensuring so that if some process has decided for the
estimated of the coordinator at round r every process that moved to round r+1 has this value as its own
estimate. This way the Uniform Agreement property is satisfied.

Reference: Unreliable Failure detectors for Reliable Distributed Systems (Chandra and Toueg).

39

Timed Asynchrony

Asynchronous systems do not guarantee an upper bound to communication and scheduling delays.
Processes cannot correctly distinguish between a crashed and slow but correct process. Fault tolerant
services for asynchronous systems must be timed.

The specification of services offered by these systems describes not only the state transitions and the
output in response to requests operations but also the time interval in which such transitions must
happen.

This model is in contrast with time-free models, where there is the absence of a time reference. In
time-free models progression is only triggered by external events.

The termination conditions for time-free asynchronous systems are typically time-free, i.e. they require
that an algorithm terminates in a finite number of steps. The termination conditions for synchronous
systems are in general time bounded in the sense that they require that operation executions terminate
in a bounded amount of time.

The termination conditions for a timed asynchronous system are (conditionally) timed; in an always
eventually majority-stable system they have the form: when a process p is majority-stable in an interval
[t, t+E], then an operation at p started by time t must terminate by t+E. The termination requirement
demands that a timed protocol has only timed termination conditions.

Model assumptions

• Processes may be subject to crash.

• Processes have access to local clocks which stay a linear envelope of real time (limited drift).

• Communications between processes is realized through an unreliable datagram service.

• There is no limit on the failure rate of communications of the processes.

• All protocol services are timed. It is therefore possible to define time-outs whose passing
determines a time failure.

Required datagram service is characterized as follows
• Allows unicast and broadcasting.
• Identifies messages in an univocal way.
• Does not ensure the existence of an upper bound on message delivery delay.
• Allows to define a time-out δ on message transmission (one-way timeout delay) whose

choice has an impact on failure rates and on system stability.
• Transmission time of messages is proportional on their size.
• It is subject to omission and timing failures.

Each process has access to a local hardware clock with a drift rate limited by ρ . Current quartz
technology offers granularities between 1us and 1ns. While the clock drift rate ranges between 10−4

40

and 10−6 . Is assumed that through a calibration mechanism local clocks stay in a linear envelope of
real time. Clock crash implies process failure, the converse is not true.

Stability Predicates

The time interval between the occurrence of an event and the termination of its processing is called
process scheduling delay. Let σ be the time-out for scheduling delays. If a process reacts to each
event within σ time is said to be timely (no performance failures).
Two processes are connected in an interval if are timely in such interval and every message exchanged
suffers a max delay of δ (one-way time-out-delay).
The choice of δ is such that we can neglect process scheduling delays σ .
If the majority of processes are pairwise connected then they form a stable majority.
A process is majority stable in an interval if it belongs to a stable majority.
A system is majority stable in an interval if if has a stable majority.

Progress assumptions are the conditions which restrict the pace of the processes and the transmission
delay.

Empirically has been observed that distributed systems activity is characterized by long periods in
which there exists a majority of stable processes alternating with short periods of instability.

Always eventually majority stable (progress assumption):
• After each instability period system becomes majority stable for at least Δ clock-time units.
• Each process eventually becomes majority stable for at least Δ clock-time units or crashes.

Where Δ is an a priori given constant.
In other words: “Infinitely often a majority of the processes will be stable for a limited time interval”.

As long as the system remains stable (i.e. failures are below a given threshold) it is able to proceed in
its computation in a limited time. Therefore it is reasonable to assume that operations and
communications offered by distributed systems are timely for most of their life.
When a system is stable it behaves as it is a synchronous system.

Failures and recoveries affecting processes not belonging to the stable majority do not affect consensus
from being reached.

Protocols designed for timed asynchronous systems that assumes majority stable progress assumption
can work seamlessly in sychronous systems in which less than half of the processes may be crashed.

Failure model is given as part of the system model while progress assumptions are separated.
The separation allows to test the model with different assumptions.

Difference with Failure Detectors Models

The impossibility to implement a Perfect FD in an asynchronous system has been demonstrated.
Failure detectors hide aspects related to time at higher levels of abstraction. The FD is discussed as we
are dealing with time-free models but the common FD implementation is indeed using timeouts to
detect failures.

41

Rotating leadership

Assumptions

1. At any instant there exists at most one leader

2. If a system is majority stable in an interval I, then for every process p belonging to a stable
majority of I there exists an interval [s, s+LD] contained in I where p is leader (LD : leadership
period).

3. A process knows that is the leader and is not required that the others know who the leader is.

4. The clocks of the processes are synchronized and skew limited by some constant.

Assumption 4 allows all processes to define a time grid in which to allocate for each process a time slot
during which p has the highest priority to become the leader.

Algorithm

1. At the beginning of each time slot each process is a candidate to be elected.

2. Each process is associated with a priority and the election protocol ensures that only the highest
priority process is elected.

3. For a process to become a leader it needs to receive a majority of replies to its candidacy and
that these replies come in time.

4. After sending its application each process waits for a period of time to receive the candidacies
of the other processes before responding to the application with highest priority.

5. After becoming the leader, a process remains as such for LD clock-time units.

This protocol guarantees that when the system is majority stable every majority-stable process will
have the highest priority in one of the elections, so everyone will eventually become leader.

The main reason this problem is solved in timed systems is the presence of local hardware clocks that
evolve into a linear real-time envelope.

If these were not available, it would not be possible to communicate by-time (i.e. the association of
information content over time) and then to determine an upper limit on the delay of messages or to
ensure that a process is no longer leading in an instant known to all other processes.

42

Consensus

The protocol prefers safety above liveness.

When a process starts for the first time its state goes from down to up. When a process starts after a
crash its state goes from down to the intermediate restarting state.

The idea is that a leader proposes a value that is not in conflict with any previous decision.

When a process p becomes a leader, it first performs a broadcast to know if any other process has
already reached a decision or is aware of a previous proposal.

Only a correctly running process UP state will respond to this request for information.

If at least the majority of processes reply to p’s inquiry, p will propose the value of the most recent
proposal. When none of the replying majority knows of any previous proposal, p proposes its own
initial value. If he does not know of any decision or does not receive a sufficient number of answers, he
will not take any action.

The leader then sends his proposal indicating his priority with it.

Each process stores the value and priority of the proposal most recently received in a protocol state.
Since each leader has a higher priority than all of its predecessors it is easy to establish the most recent
proposal.

The leader is allowed to decide on a value v only if it knows that a majority of processes know that it
has proposed v.

The leader therefore first broadcasts its proposal containing v, when a majority of the processes
acknowledge the proposal, he decides on v and then broadcasts v in a decision message.

A very important invariant of the protocol is that a majority of processes know the proposed value v
when the leader decides for it.

A process p that performs restart must re-initialize its protocol state before moving to the UP state. A
state reinitialization implies the lost of the previous decision (if were taken).

A process can only change its state from decided to not-decided if it crash and restarts.

Because is assumed that the majority of processes are up, thanks to the algorithm, the majority of the
processes remembers the value he has proposed before the crash. This will allow him to recover the
value when it will become the leader or when he will receive someone else decision or proposal.

Reference:

On the Possibility of Consensus in Asynchronous Systems (Christof Fetzer and Flavu Cristian)

43

Blockchain

After the agreement information is stored in a chain of blocks linked one to each other.

Each block is composed by some transactions.

Properties: immutability, non-repudiation, data integrity.

With Blockchain the study of consensus, BFT and its variants had a huge new impulse.

The choice of the consensus protocol impacts on the security and scalability of blockchain.

The network topology is decentralized and could be permissioned or permissionless.

A block is the base structure of Blockchain and it is composed by Header and Body.

Header main fields:

• hash of previous block;

• timestamp of block creation;

• nonce: a pseudo random number used by the consensus algorithm.

The body contains the set of transactions often organized as a hash tree (Merkle tree).

Bitcoin Proof of Work

The process to reach an agreement is often called mining.

First introduced by Bitcoin cryptocurrency, it is a permissionless consensus protocol.

Decentralization permits in all nodes, independently, to verify each transaction.

Transactions go in a pool till they are aggregated in a block and confirmed from miners. A new block of
transaction is confirmed by the first miner able to solve a computational expensive puzzle. The solution
consistutes the Proof of Work (PoW). The miner able to provide the PoW receives a fee.

In methods such as this, finality is not guaranteed in the blockchain, and when it comes to FLP
impossibility, safety was given up for liveness.

Accidental fork. Two nodes give a PoW for two different blocks almost at the same time. In such a
case the blockchain is splitted in two branches. In this situation, to add a new block, some nodes will
start mining above the first fork, while others above the second. The probability that two nodes give
again another PoW at the same time above the two forks is even lower and decreases exponentially as
the fork grows. As soon as one chain becomes the longer, the nodes working on the other will leave it
in favor of the longer. Transactions on the abandoned fork are (re)submitted for confirmation.

Follows that a transaction confirmation is only probabilistic.

44

51% issue. If there is a node with enough work power to create a chain longer than the current one,
then its chain is the valid one and the old one can be invalidated at any time.

Mining algorithm

Nodes add a coinbase transaction (generate Bitcoin for themselves). Header block is built. Miner find a
nonce that, put at the end of the block, has a SHA256(block||nonce) less than a given value. The
smaller is the given value the higher is the puzzle complexity. Value begins with a lot of zeros thus is a
computationally expensive problem to solve.

Reference: Blockchain consensus

Ethereum Proof of Work

ETHash is similar to the Bitcoin PoW, but the math puzzle required to be solved is not CPU bound but
is memory bound (memory hard). This allow more fairness between the miners because ASIC are not
(yet) created to break memory access speed barriers.

Reference: ETHash memory hardness explained

Proof of Stake

Nodes that want to participate to the mining process has to buy some cryptocurrency (a stake) to have
the probability p (proportional to the stake) to participate to the block validation process.

The algorithm selects with probability p the validator, in a way that nobody is sure to participate before
mining process starts. If a selected validator is offline, a new one is chosen.

The idea was that if you owned a PoS network’s token, you had an interest in the success of that
network. The more of the token you owned, the more you had “at stake” if the network is attacked. If
the network was successfully attacked, the value of your tokens was likely to significantly drop.

Under this logic, it made sense to grant validation rights proportional to the amount of stake you had in
the network. For instance, if your staked tokens represent 10% of all tokens that are collectively staked
by validators, you can expect to propose and validate ~10% of all blocks. With 10% stake, you are
allowed to have more influence over the network compared to people with less stake because,
theoretically, you have more to lose if you disrupt the network.

45

https://www.vijaypradeep.com/blog/2017-04-28-ethereums-memory-hardness-explained/
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-1-byzantine-fault-tolerance-245f46fe8419

A key difference between PoS and PoW is that with PoS systems there is no new coin creation
(mining). Instead, all of the coins are created in the beginning, this means the validators must be fully
rewarded through transaction fees.

Proof of Stake, Chain Based vs BFT

Chain-based PoS

Chain Based prefers liveness above safety. Forks are more likely but transactions confirmation is faster.

It is a permissionless network.

It is easier to build a complete new blockchain starting from zero. Sybil attack is easier.

Nothing-at-stake issue. Unlike in proof of work (PoW), it costs a validator nothing to validate
transactions on multiple forks. It is computationally inexpensive to build on every fork because you no
longer need PoW to create a block. Second, validators are expected to build on every fork because it is
theorized that it is in their financial self-interest to do so. If validators stake on both (or more) chains,
they will collect transaction fees on whichever fork ends up winning. This strategy will be disruptive to
consensus and could leave the network more vulnerable to double spend attacks.

Ethereum’s Casper aims to take the potential of the nothing at stake theory seriously. In order to reduce
the likelihood that validators builds on all forks, validators will be penalized by losing a portion of their
security deposit.

Another issue is the long range attack.

Sybil attack. The attacker subverts the network by forging a lot of fake identities.

BFT PoS

BFT prefers safety above liveness. Tries to achieve quorum but is slower.

The BFT style network is permissioned. Validators are randomly assigned to propose a block. The
agreement of the block is done through a multi-round consensus process (like PBFT).

Liveness may be compromised preventing consensus. Censorship attacks may be possible.

Among other considerations, this method of establishing consensus requires less effort than other
methods. However, it comes at the cost of anonymity on the system.

46

https://hackernoon.com/is-bft-consensus-effective-for-proof-of-stake-blockchain-implementations-dc01f429d225

Proof of X

There may be a proof for anything valuable. For example:

• Proof of deposit: miners lock an amount that cannot be spent during mining.

• Proof of coin age: stake is weighted by the age of possession.

• Proof of identity: miner must cryptographically prove the identity linked to the transaction.

• Proof of capacity: miner power proportional to the space allocated on disk.

• Proof of elapsed time: node waits a random number before is allowed to generate a block

◦ Validator with shortest wait time win the lottery and becomes the validator. Depends on the
TEE security (not 100%)

Practical BFT (PBFT)

PBFT It’s the first algorithm based on BFT used in a blockchain. It’s based on deterministic replicas of
a server and it is able to tolerate at most less than 1/3 byzantine nodes. That is, if f is the number of
byzantine nodes, the algorithm should have at least 3f+1 nodes.

Due to the presence of a leader node, this model follows more of a “Commander and Lieutenant”
format than a pure Byzantine Generals Problem, where all generals are equal.

The leader chooses the execution order from client’s requests, assigning to each request a different
round. Each round, called a view, comes down to 4 phases: request, pre-prepare, prepare, commit.

Algorithm Phases:

1. Request

1. A client sends a request to the leader node to invoke a service operation.

2. The leader node assigns a number to the requests.

2. Pre-Prepare

1. The leader sends a pre-prepare message inserting the view v and message m.

2. The leader inserts the message m in its log.

3. Prepare

1. The replica accepts a request if the algorithm is in view v and if can verify the message.

2. Each replica sends to all a prepare message.

3. Each replica collects messages till it has one pre-prepare message and at least 2f prepare
messages that agree for view v and message m.

4. Commit

47

1. Each replica sends a commit message in which affirms that has a quorum certificate and
add all in a log.

2. Each replica collects till it has 2f+1 commit messages for view v and message m from
different replicas.

3. Each replica executes the request, eventually after executing all requests with lower
sequence number.

4. Replicas send reply to the client.

Complexity: exponential in number of messages exchanged.

One of the primary advantages of the PBFT model is its ability to provide transaction finality without
the need for confirmations like in PoW. If a proposed block is agreed upon by the nodes in a PBFT
system, then that block is final.

PBFT Variants: optimistic, randomized, XFT, hybrid.

48

Real Time Systems

A real-time system is a system which behavior correctness depends not only on the logical results of
the computations, but also on the physical time, when these results are produced.

Classification

Classification on external requirements

• Hard real-time vs soft real-time

• Fail-safe vs Fail-operational.

Classification based on implementation

• Guaranteed timeliness vs best-effort

• Event triggered vs time triggered

Deadline: instant in the timeline when a result has to be produced.

• Soft : misses are tolerable but there is a QoS degradation. The result has utility after deadline.

• Firm: infrequent misses are tolerable. The result has no utility after the deadline.

• Hard: A miss is not tolerable. Catastrophic events could result after the deadline.

Fail-safe system: there is a state that can be reached in case of system-failure. Requires high error
detection coverage. (e.g. shutdown triggered by UPS).

Fail-operational system: does not allow to identify a safe state thus, in case of failure, it must continue
to be operational (e.g. flight control). Should provide a minimum level of service even after the fault
activation.

Guaranteed timeliness : temporal correctness is supported by analytical arguments.

Best-effort : guaranteed timeliness relies on probabilistic arguments.

For guaranteed timeliness there must be sufficient computational resources to handle the peak load
and fault scenario. Resource adequacy is expensive, but in hard RT there is no alternative.

State is a condition that persists for an interval of real time, and event is an occurrence at an instant.

• State information: informs about state attributes at the moment of observation (sampling)

49

• Event information: informs about the difference in the attributes immediately before and after
the event. Only consequences of an event can be observed.

A rare event occurs very infrequently and in most cases are not covered during workload testing.

In some applications the quality of a system depends on the predictable performance in rare event
scenarios.

Event triggered: control signals derived solely from occurrence of events (e.g. interrupt)

Time triggered: control signals derived solely from progression of time (e.g. polling)

Temporal requirements

Temporal accuracy of RT data: time between observation and output (e.g. “display”).

Response time: interval between a stimulus and the response (in RT systems must be bounded).

Predictability: temporal behavior predictable even in rare event scenario.

Variability of the observation-output delay is a form of jitter at the application level.

Jitter in control loops causes a degradation of measurements quantity. For a jitter Δd the
measurement error ΔV is ΔV=dV /dt⋅Δd (integral of the measured value function in Δd).

Execution time of an event-triggered protocol between two tasks depends on several aspects: task
scheduling on sender, buffer management on sender, data-link protocol, media access strategy, buffer
management on receiver, task scheduling on receiver.

Architecture

A good interface must be precisely specified to hide irrelevant details, lead to minimal coupling
between the interfacing subsystems (e.g. use the subsystems with generic interfaces), conform to
established architectural style.

Solid RT systems require a documented technical system architecture. Construction is supported by
a framework. Allows a system to be elegant: understandable, maintainable, extensible, cost-effective.

A documented technical system architecture allows to share the knowledge of a system and prevents
the don’t touch it again issue. Trial and error system building, without a solid and testable architecture,
is a dead-end road.

50

The challenge to manage the complexity of large scale real-time systems is the management of ever-
growing complexity. We should partition the system in subsystems that can be understood and tested
independently.

Composability: the architecture framework provides rules for systematic construction of a system out
of subsystems (components).

An architecture is composable with respect to a given property of a sub-system if this property also
holds at the system level after the integration. Build systems constructively out of prevalidated
components. Example properties where we want composability: timeliness and testability.

Two level design: separate architecture design from component design.

Scheduling

A task is a sequence of instructions that in absence of other activities is continuously executed by the
processor until completion.

In a generic multitask OS, a task has a state: e.g. ready, running, blocked.

Tasks are kept in the ready queue and the next task to be run is decided by the scheduling algorithm.

The algorithm is preemptive if the running task can be suspended; e.g. to execute a more important
task. When a task is stopped and another one is started a context switch is performed. The time
dedicated to a process before a context switch is called a time slice. A schedule is a particular
assignment of tasks to the processor.

r i : request time (arrival time)

s i : start time

Ci : worst case execution time (WCET)

d i : absolute deadline

Di : relative deadline

f i : worst case finishing time

A task set is feasible if there is a schedule such that no task misses its deadline.

RT tasks are classified depending on their deadline: Hard, Firm and Soft.

Task activation:

• Time driven: periodically activated with period T i (often Di=T i).

• Event driven: arrival of an event or via an explicit activation procedure.

51

Constraints

• Timing: deadline, activation, completion, jitter. Can be explicit (in the system specs) or implicit
(must be respected to meet the requirements).

• Precedence: a prestablished execution ordering exists.

• Resource: enforce synchronization for mutually exclusive resources (e.g. wait queues).

Earliest Due Date

(aperiodic)

Assumptions: all tasks arrives simultaneously, fixed priority (Di), preemption not allowed.

Task with the earliest relative deadline is selected.

Minimizes the maximum lateness: Lmax=max {f i−d i }). If Lmax<0 then no task miss its deadline

Offline feasibility

The task set is feasible if ∀ i ∑
k=1

i

Ck≤Di

Complexity: O(n⋅logn) to order the task set and O(n) to guarantee the whole task set feasibility.

Earliest Deadline First

(aperiodic)

Assumptions: tasks may arrives at any time, priority depends on arrival, preemption allowed.

Task with the earliest absolute deadline is selected.

Minimizes the maximum lateness.

Online feasibility

The task set is feasible if ∀ i ∑
k=1

i

ck (t)≤d i−t , with t the instant where all the tasks are running.

From time t the diagram is similar to the EDD case.

Complexity: O(n) to insert a new task in the queue and O(n) to guarantee the new task feasibility.

52

Cycle Executive

(periodic)

Given a period T i , with that T i we must guarantee that each periodic job τik is activated at

r ik=(k−1)T i and completes with d ik=r ik+Di .

Offline feasibility

Time axis divided in slots of equal length. Each task is statically allocated in a slot in order to meet the
desired request rate. Execution in each slot activated by a timer.

Each task has its own period of execution: T i

Δ : gcd (T i) is the minor cycle ,

T : lcm(T i) is the major cycle

Major and minor cycles must respect the WCET guarantees.

Advantages: simple implementation, no RT OS is required, low run time overhead, allows jitter control

Disadvantages: not robust during overloads, difficult to expand the schedule, not easy to handle
aperiodic activities, process periods must be multiples of the minor cycle, difficult to incorporate
processes with long periods, difficult to construct and maintain, a process with a variable computational
time must be split into a fixed number of fixed size procedures.

Overload problems: what to do when a task overruns? Continue can have a domino effect, stop can
leave system in inconsistent state. In some systems a rollback is better.

Rate Monotonic

(periodic)

Each task is assigned a fixed priority proportional to its rate.

Advantages: transient overruns better tolerated.

Offline feasibility

Each task i uses the processor a fraction of its dedicated (max) time period T i , thus during its period

the processor (max) usage is U i=C i /T i .

Given a task set of cardinality n, the measure of the processor load is U p=∑
i=1

n

Ci/T i .

53

Necessary condition: If U p>1 the processor is overloaded and hence the task set is not schedulable.

The converse is not true, there are cases where U p<1 but the tasks are not schedulable by RM.

Sufficient condition: For a big number of tasks n a sufficient condition is U LOW=n(21/N
−1)<0.69 .

U p=
2
5
+

2
8
+

4
20
≈0.85<1

Execution Time Analysis

Proper timing analysis is conducted after implementation: schedulability and WCET.

At design phase only schedules planning with offline feasibility are considered. In general is infeasible
to model all possible execution scenarios. Timing analysis is conducted to infer best and worst
execution time. WCET is of primary importance in schedulability analysis.

Bounds can be established using methods and tools that considers all possible exec paths of a more
abstract, simplified, version of the system. Abstraction looses information, thus estimated WCET
should always overestimate the real one.

Empirical measurements

Measuring all execution cases may be an intractable problem.

Execution time computed empirically is hardware dependent.

Selected test data may fail to trigger the longest execution path (e.g. exceptions are not triggered).

Combined WCET of smaller parts may not necessary yield the global WCET (composability).

Internal processor state may not be in the worst case initial settings (e.g. cached data).

Empirical results may be useful for a first approximation but a more systematic approach may be
required to find trustworthy WCET bound on hard RT systems.

Static analysis tools

Static analysis tools do not depend on hardware, there is an abstract system model.

Analysis types: values, control flow, process behavior, symbolic simulation.

Control flow analysis: gather information from possible execution paths.

• inputs: task representation (e.g. call graph) and possible additional data (e.g. input data ranges
and loops iterations bounds).

• output: constraints of the dynamic behavior of the task

54

	Foundations
	Computing Evolution
	Monolithic Systems
	SoS Viewpoints
	Core Concepts
	Data and State
	Actions and Behavior
	Communication
	Interfaces
	Dynamicity and Evolution
	Design and Tools
	Dependability and Security
	Emergence

	Interfaces
	Layers
	Cyber-physical interface layer
	Informational interface layer
	Service interface layer

	Relied Upon Interface
	RUI at Cyber-Physical layer
	RUI at Informational Layer
	RUI at Service Layer
	RUI Evolution Handling

	Emergence
	Multi-level hierarchy
	Emergence Explanation
	Issues

	Time and Clocks
	Clocks
	Unsynchronized local physical clocks

	Global Time and Standards
	Reasonableness Condition
	Internal Synchronization
	External Synchronization
	Global Navigation Systems
	Atomic clocks

	Resilient Master Clock

	Distributed Systems
	Synchrony classification
	Consistency models
	Distributed Coordination
	Causality
	Lamport’s Logical Clocks
	Vector Clocks

	Consensus
	Two phase commit (2PC)
	Best-Effort Broadcast
	Reliable Broadcast
	Uniform Reliable Broadcast

	Failure Detectors
	Consensus using Class S
	Consensus using Class ♦S
	Early Consensus

	Timed Asynchrony
	Rotating leadership
	Consensus

	Blockchain
	Bitcoin Proof of Work
	Ethereum Proof of Work
	Proof of Stake
	Chain-based PoS
	BFT PoS

	Proof of X
	Practical BFT (PBFT)

	Real Time Systems
	Classification
	Temporal requirements
	Architecture
	Scheduling
	Earliest Due Date
	Earliest Deadline First
	Cycle Executive
	Rate Monotonic
	Execution Time Analysis

