
 1 / 32

DLMS/COSEM Protocol

Security Walk-Through

Davide Galassi – davxy@datawok.net – 21 February 2020

 2 / 32

Standard Overview

● DLMS/COSEM is a global standard for smart
metering and related IoT applications.

● IEC 62056 is the international standard
version of DLMS/COSEM specification.

● The standard defines the semantics and the
syntax of a language for data exchange with
smart devices.

● Uses the client-server paradigm.
– Unsolicited server messages are supported.

 3 / 32

Protocol Components

● COSEM data model
– Device functions are driven through a set of

instanced objects (object oriented model).
● OBIS identification system

– Naming system for server objects instances.

● DLMS application protocol
– Defines the protocol messages syntax and

services used to interact with the objects.

 4 / 32

Smart Metering Security

● Beside the energy efficiency and smart
energy distribution, smart metering presents
new security challenges.

● Examples:
– Privacy loss of the customers may facilitate some

illegal activities (e.g. burglary).

– More centralization of controls imply an attractive
target for who may desire to cripple national services.

– Unsecured legacy devices injected in the system.

 5 / 32

Protocol Security

 6 / 32

Built-In Security

● The protocol integrates all the required
security features in the application layer.

● Advantages:
– Ad-hoc security mechanisms imply lightweight

implementation wrt TLS or similar generic protocols.

– Application-to-application security regardless of the
communication media used for transport.

● Disadvantages:
– Less modular design and separation of duties.

– Greater protocol complexity.

 7 / 32

Security Services

● Application Association
● Keys Exchange
● Message Protection
● Anti-Replay
● Role Based Access Control
● Use case features not strictly bound to the standard:

secure firmware transfer, security logs, anti-tampering, ...

 8 / 32

Security Primitives

DLMS uses state-of-the-art cryptographic algorithms and protocols

● AES-GCM for data confidentiality.

● GMAC for data authentication and integrity.

● GMAC for user authentication.

● ECDSA for digital signature.

● SHA-1 and SHA-256 as part of ECDSA.

● AES key wrap (RFC-3394) for key update.

● ECDH for key agreement.

 9 / 32

Security Suites

DLMS provides three security suites to meet various requirements.

This set of security algorithms is known as NSA Suite B, recently evolved to be the
Commercial National Security Algorithms (CNSA) Suite.

Security
Suite

Authenticated
Encryption

Key
Agreement

Digital
Signature

Hash Key
Transport

Compression

0 AES-GCM
with 128 bit key

- - - AES-Wrap
with 128 bit key

-

1 AES-GCM
with 128 bit key

ECDSA
with P-256

ECDH
with P-256

SHA-256 AES-Wrap
with 128 bit key

V.44

2 AES-GCM
with 256 bit key

ECDSA
with P-384

ECDH
with P-384

SHA-384 AES-Wrap
with 256 bit key

V.44

 10 / 32

AES-GCM Algorithm (quickly)

● AES is one of the most secure and used block ciphers in
the world.

● GCM is one of several block cipher mode of operation, a
special way to use a block cipher by putting above it a
layer to provide additional security services.

● AES-GCM provides both confidentiality and
authentication services in one single pass over the
information.

● Additional data (AAD) may be added to contribute to the
authentication tag (GMAC) generation.

● Modes such as GCM are known as AEAD (Authenticated
Encryption with Additional Data).

 11 / 32

Application Association

● Before that a user is able to interact with the server
objects an Application Association (AA) shall
performing for authentication purposes.

● Role based access control (RBAC): one or more users
are associated to a role (a profile).

– Each role is identified by a System Title (ST) string.
– Common roles: reading, management, authority.

● The role determines: data access privileges and the
protection that shall be applied to each message.

 12 / 32

Application Association

● Three security levels:
– Lowest Level Security

● No authentication at all.
● Used to read no sensitive information.

– Low Level Security
● Plain text username and password.
● Legacy feature, not used in new implementations.

– High Level Security
● Challenge-response client-server mutual authentication.
● Suggested for sensitive data interactions.

 13 / 32

HLS Association

● Protocol

1) The client sends a nonce, CtoS, to the server.

2) The server sends a nonce, StoC, to the client.

3) The client sends f(StoC) to the server.

4) The server sends f(CtoS) to the client.

5) Both the parties check if the received
f(nonce) is equal to the expected one.

● f can be chosen from:

– MD5 (nonce || secret)

– SHA-1 (nonce || secret)

– GMAC (secret || nonce)

CtoS

Client

StoC

Server

f(CtoS)

f(StoC)

Locally compute
expected f(CtoS)

Locally compute
expected f(StoC)

Compare with
expected one

Compare with
expected one

 14 / 32

HLS Association

● With MD5 and SHA1, the HLS responses are simply

MD5 (nonce || secret)

With secret a pre-shared octet-string value.

As we’ll see in the vulnerabilities section, these HLS
authentication methods have very serious vulnerabilities.

● Every modern implementation shall use the GMAC method
with a 128-bit secret (key).

 15 / 32

Cryptographic Keys

● Pre-shared key
Key exchange shall be performed out-of-band using a
secure channel. The channel implementation is out of the
standard scope and left to the implementer.

● Simple session key
Ephemeral key generated by the client and sent during
the association procedure. The key is encrypted using a
pre-shared KEK.

● Elliptic Curve Diffie-Hellman protocol
Shared key derived with both parties contribution.

 16 / 32

ECDH Key Exchange

● Thee forms of ECDH key exchange are defined:

– E2S0 : both client and server use ephemeral keys.

– E1S1 : client uses a static key while the server
uses an ephemeral key.

– E0S2 : both client and server use static keys.

● Static keys shall be exchanged via X509 certificates
signed by the implemented PKI CA.
Trusted certificates shall be distributed via a secure
channel as specified by the standard.

 17 / 32

Transport Security

● The message may be optionally protected
using the built-in security services:
– Integrity and Authentication: GMAC.

– Confidentiality: AES-GCM.

– Non-Repudiation: ECDSA.

● Digital signature service could not be used together
with the other transport security services.
(e.g. digitally signed and encrypted APDU are not allowed).

● The message payload may be compressed (ITU-T v44)

 18 / 32

Transport Security
Encrypted and/or authenticated APDU

tag transaction-id originator
system-title

recipient
system-title

date-time other
information

payload

Unprotected APDU

Unprotected APDU

Encrypted APDU

Encrypted APDU MAC

MAC

GCM Additional Authentication Data (AAD)

Authentication (SC=A)

Authenticated Encryption (SC=AE)

Security Control byte (SC)

N = No protection
C = Compression applied
A = Authentication applied
E = Encryption applied

SC

No Protection (SC=N)

Encryption (SC=E)

 19 / 32

Transport Security
Digitally signed APDU

● Note that the Security Control byte (SC) is not present in case of
digitally signed APDU.

● The receiver knows that the received APDU is digitally signed by
using the “tag”.

tag transaction-id
originator

system-title
recipient

system-title
date-time

other
information

payload signature

Signed Content

 20 / 32

Anti-Replay protection

● For each message, the AES-GCM algorithm is re-initialized
with an initialization vector containing a monotonically
increasing Invocation Counter (IC).

● The information to reconstruct each message IV is stored
within the plain text header.

● Motivations:

– Encrypt differently messages with the same data.

– Easily identify and discard duplicated messages.

● When a new key is installed the related invocation counter shall be reset to 0.

 21 / 32

Objects Access Control

● The client interacts with the server objects only via the
protocol read, write and execute services.

● Each client profile has a
different set of privileges.

● The access control granularity
is on the single object’s attribute
and method.

Profile #1 mask Profile #2 mask

Object Instance

N = No Access
R = Read
W = Write
X = Execute

 22 / 32

Protocol Vulnerabilities

 23 / 32

By-Design Vulnerabilities

● Security Downgrade

● Information Leakage

● HLS Server Impersonation

● HLS Off-Line Dictionary Attack

● Response not strictly tied to Requests

 24 / 32

Security Downgrade

● GCM and other counter-based ciphers are vulnerable to
bit-flip attacks, particularly if an attacker is likely to be
able to predict the plain text version of the message.

● Authentication tag presence is indicated by a bit in the
plain text message header.

● Since authentication is optional, an attacker may turn off
the auth bit and potentially apply deterministic changes
to the message.

● Countermeasure: enforce authentication for every
message by forbidding APDUs with the auth bit off.

 25 / 32

Information Leakage

● With encrypted PDUs, the protocol optionally allows to
specify the service type in the header tag (e.g. a Get
request).

● Each service has a fixed, well known, preamble and
message structure.

● An attacker may be able to perform a known cleartext
attack.

● Countermeasure: forbid encrypted PDUs with the explicit
service type tag.

 26 / 32

HLS Server Impersonation

● The method by which a server computes a response to a
client challenge is identical to the method by which a
client responds to a server challenge.

● A rogue server may reply the client CtoS and f(CtoS) to
trick the client that he knows the secret key.

● Since the f(CtoS) and f(StoC) are
exchanged using the execute
service, the attack requires that
the APDUs are exchanged in
plain text.

● Countermeasure: client must
reject association responses
if StoC is equal to CtoS.

CtoS

Client Rogue Server

StoC = CtoS

f(CtoS)

f(StoC) = f(CtoS)
Rogue Server
Authenticated

Replay

Replay

 27 / 32

HLS Off-Line Dictionary Attack

● When HLS association is performed using MD5 or SHA1,
an off-line dictionary attack is possible.

● If an adversary acquires a valid HLS response and its
corresponding nonce (e.g. via server impersonation or by
sniffing traffic) he can then try to find out the shared
secret.

Attacker has: nonce and h = f (nonce || password)
Offline he will try several passwords until he obtains h.

● Countermeasure: forbid the use of MD5 or SHA1
mechanisms and use randomly generated secrets.

 28 / 32

Response Not Bound to Request

● Assuming a MITM attack is in progress and the attacker is
able to intercept a request, modify it and forward the
result to the server (e.g. because the message was not
authenticated).

● If the server accepts the altered message and replies then
the original sender is not able to detect that the server
executed another command in place of the original one.

Request

Client MITM

Response

Server

Request’

 29 / 32

Implementation Vulnerabilities

● DLMS is a complex protocol and that complexity is
reflected in its implementations (with more bugs).

● Business pressure and time to market often leads to
catastrophic security holes.

● Aside of the ubiquitous buffer overflows and format
strings bugs follows a list of vulnerabilities, found in the
wild, more bound to the protocol.

● The issues were found during several years of field work
with production devices...

 … your home smart meter may be probably affected :-)

 30 / 32

Implementation Vulnerabilities

● Invocation Counters Unenforced
PDU processed when the frame counter is less than or equal to the expected one.

● Predictable Association Challenges
Allow replay attacks during HLS association. Highly unpredictable nonces shall be
used (e.g. using a CSPRNG or a TRNG). Never use a Linear Congruential Generator.

● Ciphered APDU Type Ignored
When in the security header the tag leaks information about the secured message
type (e.g. Get), the contained plain text message type shall be consistent. Some
devices ignores this and accept the message.

● Plain Text APDU Accepted
Some implementations that are supposed to accept only secured messages can be
fooled to accept plain text messages by simply using the security header with both
the crypto/auth bits turned off.

● MAC not enforced
Messages with invalid MAC are accepted.

 31 / 32

Implementation Vulnerabilities

● Invocation Counter Reset After Reboot
On power loss, some implementations reset the IC to zero.

● Arbitrary System Titles Accepted
For each different ST the last used IC shall be remembered. If arbitrary ST are accepted, an
attacker may attempt a DoS attack by filling the IC database. If a ring buffer is used, an
attacker may attempt to reset one counters by filling up the buffer and eventually proceed
with a replay attack.

● Premature Session Termination
Associations started with a HLS associations shall terminate with an encrypted
termination message. Some implementations accepts plain text termination
messages, thus allowing an attacker to disconnect legitimate sessions.

● Default keys on production
Meters on the field are occasionally left with their manufacturer default keys. The
keys are not only equal between user profiles, but also between several hundreds of
meters.

● Client Skips HLS Authentication Check
A lot of clients just doesn’t care about the possibility of rogue servers and just ignore
the received f(CtoS) response.

 32 / 32

Questions?!?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

