
BeeOS
Static Analysis

Quality and Certification 2017/2018

Author: Davide Galassi <davxy@datawok.net>

Quality Supervisor: Andrea Ceccarelli <andrea.ceccarelli@unifi.it>

Certification Supervisor: Lorenzo Falai <lorenzo.falai@resiltech.com>

Document Version : 1.0.3 (08-04-2018)

mailto:davxy@datawok.net
mailto:andrea.ceccarelli@unifi.it
mailto:andrea.ceccarelli@unifi.it

2

Table of Contents
1 Acronyms and Keywords..5
2 Introduction...6

2.1 Coding Standards..6
2.2 The Target Project...7
2.3 Analysis Scope..7
2.4 Codebase Metrics..9

3 MISRA C...10
3.1 Introduction...10
3.2 Static Analysis...11

4 MISRA C: 2012..12
4.1 Brief...12
4.2 Directives...12

4.2.1 - Implementation..12
4.2.2 - Compilation and build...12
4.2.3 - Requirements traceability..12
4.2.4 - Code design...13

4.3 Rules..16
4.3.1 - Standard C environment..16
4.3.2 - Unused code..16
4.3.3 - Comments..17
4.3.4 - Character sets and lexical conventions..18
4.3.5 - Identifiers...18
4.3.6 - Types..20
4.3.7 - Literals and constants..20
4.3.8 - Declarations and definitions..21
4.3.9 - Initialization...24
4.3.10 - The essential type model...25
4.3.11 - Pointer type conversions..27
4.3.12 - Expressions..30
4.3.13 - Side effects..31
4.3.14 - Control statement expressions...32
4.3.15 - Control flow..33
4.3.16 - Switch statements..36
4.3.17 - Functions...37
4.3.18 - Pointers and arrays..38
4.3.19 - Overlapping storage..40
4.3.20 - Preprocessing directives..40
4.3.21 - Standard libraries...42
4.3.22 - Resources...44

4.4 Conformance Matrix...45
4.4.1 - Recap...49

5 MISRA C: 2004..51
5.1 Brief...51
5.2 Rules..51

5.2.1 - Identifiers...51
5.2.2 - Types..52
5.2.3 - Declarations and definitions..52
5.2.4 - Arithmetic type conversions..53

3

5.2.5 - Control flow..53
5.2.6 - Functions...53
5.2.7 - Preprocessing directives..54
5.2.8 - Standard libraries...55

5.3 Conformance Matrix...56
5.3.1 - Recap...58

6 SEI CERT C..60
6.1.1 - Brief...60
6.1.2 - Static Analysis...60
6.1.3 - Taxonomy..61
6.1.4 - Declarations and Initialization...62
6.1.5 - Expressions..64
6.1.6 - Integers..66
6.1.7 - Arrays..70
6.1.8 - Error Handling...71
6.1.9 - Miscelaneous...71

6.2 Conformance Matrix...72
6.2.1 - Recap...73

7 Final Considerations...74

4

1 Acronyms and Keywords

Keyword Meaning

POSIX Portable Operating System Interface

UNIX A family of multitasking, multiuser OS that derive from AT&T Unix

FOSS Free and Open Source Software

MISRA Motor Industry Software Reliability Association

SEI Software Engineering Institute

CERT Computer Emergency Response Team

5

2 Introduction

2.1 Coding Standards

Coding standards are a collection of programming guidelines or requirements that help ensure that the
quality of attributes of a project are appropriate to its integrity level.

While standards may be best known for helping programmers meet stringent quality requirements for
safety-critical applications, code quality can make or break product success in a wide range of
applications. For example, code errors in non-safety-critical automotive systems can result in enormous
support costs because of the volumes involved and the overhead for recalls and upgrades, not to
mention the product brand devaluation caused by a widely publicized programming defect.

Coding standards protect programmers from errors that can be introduced due to weaknesses in the C
or C++ language or from human oversight. Essentially, coding standards provide a foundation for
programming best practices.

Compliance with programming standards helps developers:

• Promote portability and avoid unexpected results

• Avoid reliance on compiler or platform-specific constructs

• Identify unreachable or infeasible code, which can indicate a defect that could impact software
maintainability

• Prohibit certain language constructs known to be a source of common errors.

• Measurably reduce program complexity

• Improve program testability

• Reduce long-term support costs due to coding errors

While it may be desirable to have strict enforcement of a coding standard, it’s not always practical.

Some products can effectively use a subset to better meet project cost or requirements. For example,
the C programming language contains many implementation-defined behaviors that generally should
be avoided, such as using the absolute position of bits within a bit-field, but whose use is essential
under certain conditions, such as when mapping onto hardware registers.

A coding standard needs to allow some flexibility so that guidelines can be violated in a controlled way.
Decisions around flexibility and tradeoffs should be made early enough that deviations can be analyzed
and determined and rules established that define appropriate use of that deviation by the project team.

6

2.2 The Target Project

BeeOS is a FOSS UNIX-like operating system focused on simplicity and POSIX compliance.

The overall system is composed by four sub-projects:

• The C standard library (libc)
• A utility user-space library (libu)
• Some user space applications (user)
• The kernel (kernel)

This analysis targets the BeeOS kernel codebase.

https://github.com/davxy/beeos

The kernel, as most non legacy software, is a “moving target”. Thus, to avoid chasing the codebase
with our analysis, we’ve decided to freeze the branch we’re going to analyze at the version 0.1.1
regardless of the evolution of the kernel features during the time taken by the process.

Obviously during the analysis period there can be small changes within the kernel code, but only
refactory and fix to get a better compliance with the guidelines.

In the end, any modification that will benefit to the kernel project will be integrated into the upstream
kernel codebase (master branch).

2.3 Analysis Scope

The scope of the document is to verify compliance with respect to coding rules from different
standards, to analyze differences, and eventually apply corrections on the analyzed code.

In particular, the BeeOS sources will be inspected with respect to the following coding rules:

• MISRA C 2012

• MISRA C 2004

• SEI CERT C

Very briefly, the MISRA rules, are a set of coding guidelines that are applied especially in the context
of safety critical embedded systems.

The CERT C focus more on prevention of security vulnerabilities like stack-integer and buffer
overflows.

The two rules families, when followed together, can provide real rock solid code.

7

https://github.com/davxy/beeos

The whole analysis and refactory process is synthesized by the following figure

as evidenced, the process final product will be BeeOS v0.2.0.

For every coding standard we will provide a compliance matrix, that is a table where for each rule the
violations are counted to give a quantitative result.

For each coding standard matrix the pre-intervention column refers to the violations found with the
previous phase output; the post-intervetion column is produced using the output of the whole process
(kernel v.0.2.0).

The choice to don’t take as the post-intervention values the output of the specific phase is due to the
fact that some violations that are still present in a phase output may be resolved (or introduced) as a
side effect of some refactory required by a coding standard that follows in the chain. Thus, to give a
better idea of the overall work result, we’ve decided to provide a matrix containing the output of the
process viewed as a single functional block.

8

2.4 Codebase Metrics

Pre-Intervention
v0.1.1

Post-Intervention
v0.2.0

Files 110 112

Functions 249 255

Blank Lines 1,423 1,576

Preprocessor Lines 760 791

Code Lines 4,841 4998

Comment Lines 3,811 3,894

Comment to Code Ratio 0.79 0.78

Declarative Statements 1,299 1,297

Executable Statements 2,213 2,370

Inactive Lines 51 55

Lines 10,302 10,735

9

3 MISRA C

3.1 Introduction

MISRA C is a set of software development guidelines for the C programming language developed by
the Motor Industry Software Reliability Association. Its aims are to facilitate code safety, security,
portability and reliability mainly in the context of embedded systems, specifically those systems
programmed in C89 and C99.

The guidelines define a subset of the C language in which the opportunity to make mistakes is either
removed or reduced.

The standard is divided in two macro areas:

• Directives: guidelines for which it is not possible to provide the full description necessary to
perform a check for compliance. Static analysis tools may be able to assist in checking
compliance with directives but different tools may place widely different interpretations on
what constitutes a non-compliance.

• Rules: guidelines for which a complete description of the requirement has been provided. It
should be possible to check that source code complies with a rule without needing any other
information.

Furthermore to every MISRA C rule and directive is given a single category of:

• Mandatory: violations to a mandatory guideline is not permitted.

• Required: formal deviation documentation is necessary for required guidelines violations.

• Advisory: these are recommendations, formal deviations documentation are not necessary.

Note that the status of “advisory” does not mean that these items can be ignored, but rather that they
should be followed as far as is reasonably practical.

In some instances it may be necessary to deviate from the guidelines. Deviations are divided into two
categories:

• Project deviation: used when a guideline is deviated in a particular class of circumstances.

• Specific deviation: used for deviations that interest a single instance in a single file.

In this assessment we’re not aiming for strict compliance.

Follows that we’ll encounter several deviations to required guidelines where the project requires it both
for design or practical reasons.

10

3.2 Static Analysis

It is possible to check that C source code complies with MISRA C by means of inspection alone.
However, this is likely to be extremely time-consuming and error prone.

Any realistic process for checking code against MISRA C will therefore involve the use of at least one
static analysis tool.

Unfortunately, maybe because this type of analysis is more frequently performed in a professional
industrial engineering context, there is a lack of free tools in this area. Anyway we were able to
successfully conduct our analysis by combining the evaluation versions of two non-free tools and by
cheating a bit.

The used tools are:

• Understand from Scientific Toolworks.

• PC-Lint from Gimpel Software

Scientific Toolworks gives the opportunity to download an evaluation version of the complete
Understand software. The tool looks very solid but the evaluation is only able to analyze more or less
the 70% of the complete MISRA rules set.

PC-Lint offers an on-line evaluation page capable to analyze every other rule

http://www.gimpel-online.com/OnlineTesting.html

Its usage is a bit less practical since they offer only a web form where the code to be analyzed should
be pasted and then sent to the backing engine for analysis.

The code that we paste in the form should be “self-contained”, meaning that it cannot contain external
include dependencies (as our code obviously has). To solve the issue is sufficient to preprocess the
source file to expand, in a single translation unit, every dependency. For reference we give the used
command:

$ gcc -P -E -CC -Ilibc/include -Ikernel/src -Ikernel/include kernel/src/mysource.c

-P : inhibit the generation of line markers in the preprocessor output
-E : preprocess only
-CC : do not dicard comments, including during macro expansion
-I : include path

We’ve exploited such a page to analyze, file after file, our entire kernel codebase (obviously using an
ad-hoc script that does all the work in the background for us).

The PC-Lint hack filled the gap and we were able to analyze the kernel code against the full MISRA C
rule-set.

As a C toolchain we’ve mainly use the free GNU gcc and binutils.

11

4 MISRA C: 2012

4.1 Brief

In 2013, MISRA C 2012 was announced. MISRA C 2012 extends its predecessor with support to the
C99 version of the C language (while maintaining guidelines for C89) and including a number of
improvements that can reduce the cost and complexity of compliance, whilst aiding consistent, safe use
of C in critical systems.

MISRA C 2012 contains 16 directives and 143 rules.

4.2 Directives

4.2.1 - Implementation

Directive 1.1 (Required) - Any implementation-defined behavior on which the output of the program
depends shall be documented and understood.

To increase portability across compilers and architectures, constructs that are defined as
“implementation defined” or “unspecified” by the ANSI C standard are avoided.

4.2.2 - Compilation and build

Directive 2.1 (Required) - All source files shall compile without any compilation errors.

Enforced by the “-Wall” and “-Werror” compiler flags.

4.2.3 - Requirements traceability

Directive 3.1 (Required) – All code shall be traceable to documented requirements.

There is only core one requirement: compliance with the POSIX standard.

12

4.2.4 - Code design

Directive 4.1 (Required) – Run-time failures shall be minimized.

Every function return value is checked. In the eventuality of a runtime error the work already
done by the failing function is subject to a rollback to resume the previous state.

Project deviation

For efficiency, sanity checks are done only for input values coming from user-space. Inter-
kernel function arguments are not subject to sanity check when argument validity is a function
precondition constraint.

Directive 4.2 (Advisory) – All usage of assembly language should be documented.

Low level assembly language is used internally and in very specialized contexts, for example to
implement the entry gate of interrupt handling routines or kernel low level startup code.
Documentation is such very self contained cases is not useful.

Documentation has been inserted for assembly functions that may be interesting for driver
developers (e.g. x86 port i/o or enable/disable interrupts).

Directive 4.3 (Required) – Assembly language shall be encapsulated and isolated.

Violations were present. Inline assembly code was present directly within the functions body
were necessary (e.g. task context switch or page table swap).

Assembly code has been isolated and properly encapsulated within C macros or stand-alone
assembly source files.

Directive 4.4 (Advisory) – Sections of code should not be “commented out”

Unused code is reduced to the minimum. In the eventuality that some code must be excluded
from compilation the “#if 0 #endif” trick is used. This is compliant with the MISRA
requirements.

Directive 4.5 (Advisory) – Identifiers in the same name space with overlapping visibility should be
typographically unanbiguous

Depending upon the font used to display the character set, it is possible for certain glyphs to
appear the same. This has been generally avoided in the project.

Specific deviation

The tool warn us that two members of the same structure, c_iflag and c_lflag, are
typographically similar and thus can be source of future errors.

13

Unfortunately there is nothing to do here, the two fields are members a POSIX defined
structure, termios. Compliance with POSIX is paramount.

Directive 4.6 (Advisory) – typedefs that indicate size and signedness should be used in place of the
basic numerical types

This directive is strictly followed just where there is a valid reason to do so. In particular, within
the lowest level code and data structures where the size and the elements alignment is
fundamental for the system working.

For example, the interrupt descriptor table entries:

struct idt_entry {
 uint16_t offset_lo; /* Lower 16 bits of the addr to jump to */
 uint16_t selector; /* Kernel segment selector. */
 uint8_t zero; /* This must always be zero. */
 uint8_t flags; /* More flags. See documentation. */
 uint16_t offset_hi; /* Upper 16 bits of the addr to jump to. */
};

Project deviation

If there isn’t an integral type width requirement a deviation is introduced.

Directive 4.7 (Required) – If a function returns error information, then that error information shall be
tested

Respected by every caller.

An ignored bad return value, in the kernel context, can jeopardize the whole system stability
and, at best, trigger a kernel-panic and a machine reset.

Before the intervention, a safe deviation causing 47 violations was present. The kprintf
function, i.e. the kernel equivalent of printf, return value (i.e. the number of characters
effectively printed) was always ignored. The function prototype has been modified to return
void.

Directive 4.8 (Advisory) – If a pointer to a structure or union is never dereferenced within a
translation unit, then the implementation of the object should be hidden.

Project deviation

Opaque pointers are not used by the project. Structures that are used across translation units are
inserted within a header file to allow stack or global allocation.

Types that are used only within a translation unit are generally defined within the translation
unit itself, thus hidden to the external world.

Directive 4.9 (Advisory) – A function should be used in preference to a function-like macro where they
are interchangeable.

14

Effective inlining of inline functions are left to the compiler. Thus, is not guaranteed that
inline functions will, in the end, not result in a stand-alone function call.

Project deviation

For maximum efficiency, small code snips are defined as function-like macros.

Directive 4.10 (Required) – Precautions shall be taken in order to prevent the contents of a header file
being included more than once.

Every header file starts with the well known preprocessor guards to explicitly avoid double
inclusion.

#ifndef HEADER_NAME_
#define HEADER_NAME_
 ...
#endif /* HEADER_NAME_ */

Directive 4.11 (Required) – The validity of values passed to library functions shall be checked

Validity of parameter arguments are always checked by the caller. Internal functions assume
that the input arguments constraints are respected.

Directive 4.12 (Required) – Dynamic memory allocation shall not be used

If a decision is made to use dynamic memory, care shall be taken to ensure that the software
behaves in a predictable manner.

Project deviation

The tool indicates zero violations, but this is a false negative. The kernel allocates dynamic
objects (files, inodes, dentries, etc.) via its own memory allocator.

As a general purpose kernel, a priori knowledge of the required objects number is not possible.
Pre-allocation of a fixed number of objects in global memory is possible but not a desirable
feature in a system like this.

Directive 4.13 (Advisory) – Functions which are designed to provide operations on a resource should
be called in an appropriate sequence

Every function that acquire resources is paired with the dual one to release them. They are
called in the appropriate sequence (e.g. iget/iput, kmalloc/kfree, etc.).

If a complex structure has nested resources to be allocated they are released in the opposite
order followed by the initialization.

In case of errors in the middle of a function that allocates several resources a proper rollback
sequence is guaranteed.

15

4.3 Rules

4.3.1 - Standard C environment

Rule 1.1 - (Required) The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation’s translation limits.

Generally, standard C89 syntax has been followed, with no constraints violations.

Rule 1.2 - (Advisory) Language extensions should not be used.

No compiler defined language extensions were used.

Project deviation

The asm keyword, used to insert inline assembly code, is not in the ISO C standard (n1570 draft
of C2011), but is mentioned as a common extension in annex J (common extensions).

Rule 1.3 - (Required) There shall be no occurrence of undefined or critical unspecified behavior.

Expressions marked as “undefined” or “unspecified” behavior by the standard were avoided.

4.3.2 - Unused code

Rule 2.1 (Required) - A project shall not contain unreachable code.

Coverage testing has not been performed. But we are confident that the project doesn’t contains
unreachable code.

The tool signals zero violations, but it is not very reliable with this type of check.

Rule 2.2 (Required) - There shall be no dead code.

The project doesn’t contains unreachable code.

False positives

The tool identified 38 violations, all of which are code statements called from assembly
language code.

Rule 2.3 (Advisory) - A project should not contain unused type declarations.

16

Specific deviation

The tool reports the elf_section_header structure, defined within the elf.h header file, as
unused. Indeed that structure has been defined for future usage (i.e. may be required for a stack
trace on kernel panic).

Rule 2.4 (Advisory) - A project should not contain unused tag declarations.

The same violation of Rule 2.3 has been reported.

Rule 2.5 (Advisory) - A project should not contain unused macro declarations.

False positives

Macros used within assembly language code are not detected by the tool.

Project deviation

Some macro, especially the ones defining some device register bit values or flags, are defined
for completeness or future usage.

Rule 2.6 (Advisory) - A function should not contain unused label declarations.

Compliant.

Rule 2.7 (Advisory) - There should be no unused parameters in functions.

Project deviation

Some POSIX defined functions prototypes requires some parameter list that, at this
development stage, are not used by the kernel implementation and are silently ignored.

For example, within the mount syscall implementation

int sys_mount(const char *source, const char *target, const char *fstype,
 unsigned long flags, const void *data);

only the source, target and fstype parameters are used.

4.3.3 - Comments

Rule 3.1 (Required) - The character sequences /* and // shall not be used within a comment.

The tool indicates 114 violations and all of them should be ignored.

17

The issue is caused by URLs embedded within the comments. The most common (114
violations and 112 source files) is caused by the license header that is present in every source
file.

/*
 * <http://www.gnu/licenses/>
 */

Rule 3.2 (Required) - Line-splicing shall not be used in // comments.

C99 // comments are avoided in favor of the C89 /* */ comment style.

4.3.4 - Character sets and lexical conventions

Rule 4.1 (Required) - Octal and hexadecimal escape sequences shall be terminated.

Compliant.

Rule 4.2 (Advisory) - Trigraphs should not be used.

Compliant.

4.3.5 - Identifiers

Rule 5.1 (Required) - External identifiers shall be distinct

The C89 is too restrictive, requiring that the first 6 characters of the external identifiers to be
distinct. C99 increase the number to 31.

We are compliant to the C99 rule version.

Rule 5.2 (Required) - Identifiers declared in the same scope and name space shall be distinct.

Compliant to both the C89 (31 chars) and the C99 (63 chars) versions.

Rule 5.3 (Required) - An identifier declared in an inner scope shall not hide an identifier declared in
an outer scope.

Some violations were found by the tool and were fixed for compliance.

In particular variables hiding a global scope structure name

struct bufctl { … };

void func(struct bufctl *bufctl) { … }

18

Rule 5.4 (Required) - Macro identifiers shall be distinct.

Compliant.

Rule 5.5 (Required) - Identifiers shall be distinct from macro names.

There were two violations because of this code snip

#ifndef __ASSEMBLER__
 static inline void *phys_to_virt(void *addr)
 {
 return (char *)addr + KVBASE;
 }
#else
 #define phys_to_virt(addr) ((addr) + KVBASE)
#endif

and, similarly, the virt_to_phys identifier.

The macro version was used only in one place thus has been removed and substituted with a
direct calculation.

Rule 5.6 (Required) - A typedef name shall be a unique identifier.

Compliant.

Rule 5.7 (Required) - A tag name shall be a unique identifier.

There were four violations all caused by structures forward declarations.

Even though a forward declaration should be an accepted construct, we’ve taken a corrective
action to attain compliance.

Typical forward declarations usage:

struct inode;

struct inode_ops {
 ...
 int (*inode_read)(struct inode *inod, char *buf, size_t n);
 ...
};

struct inode {
 ...
 struct inode_ops *ops;
};

Rule 5.8 (Required) - Identifiers that define objects or functions with external linkage shall be unique.

19

There were two violations. Both caused by a global variable, with external linkage, with the
same name of a structure field. One case:

struct ramdisk {
 void *addr;
 size_t size;

};

struct ramdisk ramdisk;

Replaced by:

struct {
 void *addr;
 size_t size;

} ramdisk;

Rule 5.9 (Advisory) - Identifiers that define objects or functions with internal linkage should be
unique.

There were two violations. The structures names were the same as the structures instances
(similar to violation of Rule 5.8, but this time the instances has internal linkage).

Easily resolved by renaming the structures.

4.3.6 - Types

Rule 6.1 (Required) - Bit-fields shall only be declared with an appropriate type.

Bit-fields are not used within the project. Preference was given to the more traditional macro
flags and masks.

Rule 6.2 (Required) - Single-bit named bit fields shall not be of a signed type.

Refer to MISRA C 2012 Rule 6.1.

4.3.7 - Literals and constants

Rule 7.1 (Required) - Octal constants shall not be used.

PC-Lint reports 49 violations but for the Understand tool the code is compliant.

The non congruence is probably due to the fact that Understand doesn’t expand macros that are
not part of the project or it doesn’t consider a macro value an “octal constant”.

Project deviation

20

These violations are just ignored because:

• The macro values are not part of the BeeOS kernel codebase.
• The macro values are POSIX required and part of the “fcntl.h” libc header file.

Rule 7.2 (Required) - A “u” or “U” suffix shall be applied to all integer constants that are represented
in an unsigned type.

Project deviation

The original kernel does not explicitly append the unsigned suffix to the integer constants and
let the compiler do the cast wherever is considered safe. Generally the constants are used as
flags, presented in hex form, to be assigned to unsigned types. The unsigned types are then used
with binary Boolean and bitwise operators.

Obviously the unsigned suffix for such an constant literal values would be more appropriate
because of their usage, but for coherence with the other BeeOS projects, i.e. the standard C
library, the user space library and the user space programs, the kernel integer constants are left
untouched.

The violation could be very easily fixed in the eventuality that is absolutely required.

Note: this deviation is strictly linked with the violations of Rules 10.1, 10.3 and 10.4

Rule 7.3 (Required) - The lowercase character “l” shall not be used in a literal suffix.

Compliant.

Rule 7.4 (Required) - A string literal shall not be assigned to an object unless the object’s type is
“pointer to const-qualified char”.

There was one trivial violation and has been fixed.

char *echo_buf;
echo_buf = "\b \b";

4.3.8 - Declarations and definitions

Rule 8.1 (Required) - Types shall be explicitly specified.

There were four violations within the “ipc/msg.h” and “ipc/msg.c” sources.

Three violations was due to the not inclusion of ”time.h” header and usage of time_t type.
One violation was due to the key_t type missing definition (taken by default as an int).

Because were effectively unused (dead code), the non-compliant sources were removed from
the project.

21

Rule 8.2 (Required) - Function types shall be in prototype form with named parameters.

There was some violations because of not explicit void parameter type in functions taking no
parameters. Easily fixed:

int func() → int func(void)

Rule 8.3 (Required) - All declarations of an object or function shall use the same names and type
qualifiers.

There were 16 violations caused by a mismatch in the parameters names in prototypes and
definitions of some functions.

Rule 8.4 (Required) - A compatible declaration shall be visible when an object or function with
external linkage is defined.

There were 70 violations because header files declaring the exported function was not directly
included in the file defining the function body.

This practice was not followed because is practically not required. But indeed is safer to do so,
the code was thus fixed.

There are also a small number of warning instances caused by the absence of a header file
defining the external linkage functions. Where required these were directly declared within the
translation unit. Easily fixed as well.

Specific deviations

Two violations remains: kmain and arch_init, both functions are called by the early startup
assembly code. Thus a header file declaration would be superfluous and misleading.

Rule 8.5 (Required) - An external object or function shall be declared once in one and only one file.

Some functions or global variables were declared both in the proper header file and in the
translation unit were are used.

This is because, probably, the header file were introduced later, during the development.

Rule 8.6 (Required) - An identifier with external linkage shall have exactly one external definition.

False positives

Found 65 violations and all are false positives.

The majority were due to their definition within assembly language sources; the other cases
were standard C library functions: strlen, strcpy, memcpy, memset, vsnprintf.

22

Rule 8.7 (Advisory) - Functions and objects should not be defined with external linkage if they are
referenced in only one translation unit.

There were four violations within four syscall handlers that were not inserted into the syscalls
array, thus they were dead code. Easily fixed.

False positives

There are five violations caused by C code that is called by external assembly code. The more
obvious false positive is the kmain function that is invoked by the low level startup routine.

Project deviation

There are some functions that have external linkage and are inserted in the header files even if
they are never called by another translation unit. This is voluntary and is intended for possible
future usage.

Rule 8.8 (Required) - The static storage class specifier shall be used in all declarations of objects and
functions that have internal linkage.

False positives

The tool signaled two functions: arch_init and kmain. Both of them are invoked from
assembler code thus the violations are taken as false positives.

Rule 8.9 (Advisory) - An object should be defined at block scope if its identifier only appears in a
single function.

Project deviation

The rule is not strictly followed. Some “long” arrays were declared globally within the
translation unit instead of directly within the function, even if its identifier is used only there.

This practice has been followed for two core reasons, one practical and one more bound to code
design:

• Is not a good practice do declare huge structures within the stack (especially in
embedded systems). Stack clash with some other parts of the program are never easy to
detect and are very dangerous. Note this not risk doesn’t exists when the data is declared
as static.

• Don’t masquerade what the function is supposed to do with huge data declarations.

Rule 8.10 (Required) - An inline function shall be declared with the static storage class.

Compliant.

Rule 8.11 (Advisory) - When an array with external linkage is declared, its size should be explicitly
specified.

23

Compliant.

Rule 8.12 (Required) - Within an enumerator list, the value of an implicitly specified enumeration
constant shall be unique.

Compliant.

Rule 8.13 (Advisory) - A pointer should point to a const qualified type whenever possible.

Where possible, constant pointers are used to refer to variables that are not modified within the
pointer current scope.

Rule 8.14 (Required) - The restrict type qualifier shall not be used.

Compliant.

4.3.9 - Initialization

Rule 9.1 (Mandatory) - The value of an object with automatic storage duration shall not be read before
it has been set.

One fix, the rest are all false positives.

False positives

Three violations are signaled in the x86 architecture specidic input functions (“io.h”). The tool
doesn’t notice that the variables are initialized via some inline assembly code.

Rule 9.2 (Required) - The initializer for an aggregate or union shall be enclosed in braces.

Compliant.

Rule 9.3 (Required) - Arrays shall not be partially initialized.

Compliant.

Rule 9.4 (Required) - An element of an object shall not be initialized more than once.

Compliant.

24

Rule 9.5 (Required) - Where designated initializers are used to initialize an array object the size of the
array shall be specified explicitly.

There was a big array, the one holding syscalls handlers, that was using designated initializers
without declaring its size explicitly. Easily fixed.

4.3.10 - The essential type model

Compliance to this section requires a lot more expensive code refactory.

The required modifications would be so invasive that the risk to insert bugs within the kernel is higher
than the obtained benefit. The code compliance is still possible but requires a time cost beyond the
scopes of this code analysis.

As a more personal opinion, in very low level contexts, as in kernel programming, it should be just
accepted that C is not a type safe language and that the programmer must know how to use its tools.

Some of the violations were corrected as a side effect of others modifications done during the analysis
of the other rules and directives.

Rule 10.1 (Required) - Operands shall not be of an inappropriate essential type.

The tool originally notified 264 violations. Of those, 81 are ignored because they are because
of flags defined within the standard C library scope, thus not properly part of the project. The
others were mitigated to 100 violations as a side effect of code refactory.

Project deviation

Every violation to this rule is due to application of bit-wise operators (bitwise logical or shifts)
to literal integer values, that defaults to signed. For example,

unsigned int flags = FLAGS;
unsigned int res = flags & 0x1; /* not compliant */
unsigned int res2 = flags & 0x1U; /* compliant */

Compliance to this rule could be trivially obtained by adding the U suffix to every literal integer
value involved in a logical operation. This modification is not expensive and could be easily
applied, but we’ve decided to introduce the above deviation to maintain a consistent coding
style with the rest of the project.

For more information refer to Rule 8.2.

Rule 10.2 (Required) - Expressions of essentially character type shall not be used inappropriately in
addition and subtraction operations.

Compliant.

25

Rule 10.3 (Required) - The value of an expression shall not be assigned to an object with a narrower
essential type or of a different essential type category.

320 Violations mitigated to 263 via code refactory.

Proper compliance to this rule requires a very expensive intervention.

Project deviation

Almost every violation is due to assignment between unsigned typed variables and integer
literal constants. Follows a very trivial example:

unsigned int a = 30; /* non compliant code */
unsigned int a = 30U; /* compliant code */

Rule 10.4 (Required) - Both operands of an operator in which the usual arithmetic conversions are
performed shall have the same essential type category.

306 Violations.

Proper compliance to this rule requires a very expensive intervention.

Project deviation

Almost every violation is due to an arithmetic operation performed between unsigned typed
variables and integer literal constants. Follows a very trivial example:

unsigned int a;
...
if (a < 30) { ... } /* non compliant code */
if (a < 30U) { ... } /* compliant code */

Rule 10.5 (Advisory) - The value of an expression should not be cast to an inappropriate essential
type.

Compliant.

Rule 10.6 (Required) - The value of a composite expression shall not be assigned to an object with
wider essential type.

Specific deviation

There are three composite expressions assigned to an object with a wider essential type for
context specific requirements. Because truncation is not possible, deviations to this rule can be
considered safe in every violation context.

Example of a found violation within the ext2 file-system driver:

uint32_t blk;
uint32_t blk = (dsb.log_block_size == 0) ? 3 : 2; /* not compliant */

Compliant version

uint32_t blk = (dsb.log_block_size == 0) ? (uint32_t)3 : (uint32_t)2;

26

The corrections required for compliance are trivial as far as they are ugly. We’ve decided to
leave the code as-is. In addition is still not very clear why this rule has been marked as required.

Rule 10.7 (Required) - If a composite expression is used as one operand of an operator in which the
usual arithmetic conversions are performed then the other operand shall not have wider essential type.

Compliant.

Rule 10.8 (Required) - The value of a composite expression shall not be cast to a different essential
type category or a wider essential type.

Compliant.

4.3.11 - Pointer type conversions

Low level code, very often, requires to cast pointers to integers, integers to pointers or pointers of one
type to pointers of another.

Especially in architecture specific code, if done correctly, the practice can be considered safe. For
example, in x86 arch specific code a pointer can be safely casted to and from a uint32_t value but not
to a uint16_t value without potential information lost.

Rule 11.1 (Required) - Conversions shall not be performed between a pointer to a function and any
other type.

Specific deviation

We ignore all the violations caused by the external macros SIG_IGN, SIG_DFL and SIG_ERR.
These macros values are integers casted to sighandler_t function pointers and meant to be
assigned to the dedicated member of the siginfo structure.

These macros with integer values (practically impossible to be assumed by a function pointer)
are required by the POSIX standard.

Specific deviation

Within the “syscall.c” source file there are 38 implemented syscalls and each one has an
associated unique numeric identifier. To invoke a particular kernel syscall the user provides that
identifier, eventually with context specific arguments.

To simplify and optimize the selection of the correct syscall handler, all the function pointers
are stored within a single array using the identifier as the index. The problem here is that every
handling function pointer has a different prototype, thus, to avoid compiler warnings, we’ve
decided to store them all in an array of pointers to void.

27

static void *syscalls[SYSCALLS_NUM] = {
 [__NR_exit] = sys_exit,
 [__NR_fork] = sys_fork,
 ...
};

Specific deviation

Within the x86 arch specific “idt.c” source file there are 49 deviations due to the cast of
function pointers to uint32_t. This cast can be considered safe because has been performed in
an architecture specific context where, the size of a pointer is exactly four bytes.

Additionally, in this particular case there wasn’t another other choice, we have to do the cast in
order to split the address in two parts (low and high) and place the two chunks in one of the IDT
(Interrupt Descriptor Table) entry members.

static void idt_entry_init(int i, uint32_t offset, uint16_t selector,
 uint8_t flags)
{
 ...
 idt_entries[i].offset_lo = offset & 0x0000FFFF;
 idt_entries[i].offset_hi = offset >> 16;
 ...
}

idt_entry_init(3, (uint32_t)isr_0, 0x08, 0x8E); /* isr_0 is the handler */

Because of their nature all these violations are ignored.

Rule 11.2 (Required) - Conversions shall not be performed between a pointer to an incomplete type
and any other type.

Compliant.

Rule 11.3 (Required) - A cast shall not be performed between a pointer to object type and a pointer to
a different object type.

We’ve received 64 violations to this rule and all of them can be considered safe deviations.

Project deviation

The majority of the violations are due to casts between pointers of different types to easily and
efficiently implement some functionality.

One simple example, that covers the majority of the violations, is the macro struct_ptr. This
macro is widely (and wisely) used to get a pointer to an object from a pointer to a member of
the same object.

#define struct_ptr(memb_ptr, struct_typ, memb_name) \
 ((struct_typ *)((char *)(memb_ptr)-offsetof(struct_typ,memb_name)))

To avoid memory access issues is important that the struct_typ is already instanced and
properly aligned.

28

Rule 11.4 (Advisory) - A conversion should not be performed between a pointer to object and an
integer type.

We’ve received 89 violations to this rule. 41 instances were resolved by revieweing the code,
32 instances are considered safe because of their architecture specific context, the remaining
violations are considered (safe) project deviations.

Project deviation

A pointer to integer and integer to pointer cast is considered safe when the integer is a
uintptr_t type (indeed that is the purpose of the type).

Once that a pointer has been casted to a uintptr_t bitwise operations are allowed.

For example, to align an address up to the next multiple of the size of a void pointer.

#define ALIGN_UP(val, a) (((val) + ((a) – 1)) & ~((a) - 1))

char *aligned_ptr = ALIGN_UP((uintptr_t)addr, sizeof(void *));

Specific deviation

Another deviation comes in the construction of the process stack when it should contain an
address. Without recurring to the less manageable double pointers (e.g. void **).

uintptr_t *sp;
sp[n] = (uintptr_t)sp; /* store the stack pointer address into the stack */

Rule 11.5 (Advisory) - A conversion should not be performed from pointer to void into pointer to
object.

Almost every notified violation was due to the kmalloc usage. The allocator function returns a
pointer to void and was usually directly assigned to the destination object pointer. These
specific type of violations were solved by casting the returned pointer to the appropriate type
before assignment.

Specific deviations

Some specific deviations are required to be compliant with the POSIX standard. As an example,
consider the read syscall:

 ssize_t read(int fd, void *buf, size_t count);

Internally there should be a point where the implementation casts the void pointer to a uint8_t
(or unsigned char) pointer to read the data, octet after octet, from the low level driver.

Rule 11.6 (Required) - A cast shall not be performed between a pointer to void and an arithmetic type.

We’ve received 169 violation to this rule.

More than 40 instances were resolved by revieweing the C standard library offsetof macro
implementation.

29

Around 100 instances are considered safe due to their architecture specific nature, in such a
context casts are inevitable (e.g. to populate the mmu page tables)

All the remaining instances are safe project deviations (see Rule 11.4).

Rule 11.7 (Required) - A cast shall not be performed between pointer to object and a non-integer
arithmetic type.

Compliant.

Rule 11.8 (Required) - A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer.

There were 5 violations due to cast-away of the const qualifier during assignment.

Rule 11.9 (Required) - The macro NULL shall be the only permitted form of integer null pointer
constant.

There were 9 violations due to the direct assignment of the constant value 0 to a pointer type.

4.3.12 - Expressions

Rule 12.1 (Advisory) - The precedence of operators within expressions should be made explicit.

According to this rule every composite expression within a conditional statement should be
parenthesized to make the operator precedence explicit.

Project deviation

Due to coding style, when the evaluation order is “not ambiguous1”, we introduce a violation.

Example of a non ambiguous expression:

res = (a == 0 || b != 0)

Example of an ambiguous composite expressions:

res = 3 + (1 != 0) ? 1 : 2;

With the above expression the 80% of the programmers (we’ve made a little poll in our office)
replies that the composite expression evaluates to 4 (obviously you must don’t know that there
is a trick...otherwise you have more chances). Actually, the expression evaluates to 1 due to the
highest precedence of the operator “+” with respect to the “?”.

Parenthesizing, the expression is equivalent to:

1 Subjective. In this case for non-ambiguous we intend cases that are so common that every programmer, worthy of the
name, can evaluate correctly.

30

res = (3 + (1 != 0)) ? 1 : 2 → res = 4 ? 1 : 2 → res = 1

Obviously our original response followed the wrong precedence path equivalent to:

res = 3 + ((1 != 0) ? 1 : 2);

Rule 12.2 (Required) - The right hand operand of a shift operator shall lie in the range zero to one less
than the width in bits of the essential type of the left hand operand.

Compliant.

Rule 12.3 (Advisory) - The comma operator should not be used.

Every comma operator usage has been removed.

The tool still indicates 8 violations and all are caused by the implementation of the macros
operating on the sigset type (sigaddset, sigdelset, ...).

The macros are part of the standard C library thus are ignored.

Rule 12.4 (Advisory) - Evaluation of constant expressions should not lead to unsigned integer wrap-
around.

Compliant.

4.3.13 - Side effects

Rule 13.1 (Required) - Initializer lists shall not contain persistent side effects.

Compliant.

Rule 13.2 (Required) - The value of an expression and its persistent side effects shall be the same
under all permitted evaluation orders.

Compliant.

Rule 13.3 (Advisory) - A full expression containing an increment (++) or decrement (--) operator
should have no other potential side effects other than that caused by the increment or decrement
operator.

The tool indicates 15 violations and all are due to expressions like the following:

buf[i++] = '/';

31

This is a very widespread, and accepted, way to write C code. If properly used, the violation
does not produce any side effect and is quite safe.

Project violation

A project-wide deviation has been introduced due to the previous expression types.

Rule 13.4 (Advisory) - The result of an assignment operator should not be used.

The tool indicates 44 violations and all are due to the usage of the result of an assignment in a
Boolean expression.

if ((n = read_bytes()) < 0) { ... }

This is a very widespread, and accepted, way to write C code. If properly used, the violation
does not introduce any side effect and is quite safe.

Project violation

A project-wide deviation has been introduced due to the previous expression types.

Rule 13.5 (Required) - The right hand operand of a logical && or || operator shall not contain
persistent side effects.

Two trivial violations were fixed.

False positive

A violation is still signaled within the “ext2.c” source file .

if(strlen(name) == dirent->name_len &&
 memcmp(name, dirent->name, dirent->name_len) == 0)

PC-Lint reported violation: “Side effects on right hand of logical operator &&.”

Actually we’ve not found any valid reason for this warning. There are no side effects related to
the memcmp call. It works on pointers to constant and it is not implemented as a macro that may
alter the “name” pointer value. We’ll consider this as a false positive.

Rule 13.6 (Mandatory) - The operand of the sizeof operator shall not contain any expression which
has potential side effects.

Compliant.

4.3.14 - Control statement expressions

Rule 14.1 (Required) - A loop counter shall not have essentially floating type.

Compliant.

32

Rule 14.2 (Required) - A for loop shall be well-formed.

Compliant.

Rule 14.3 (Required) - Controlling expressions shall not be invariant.

There was one violation due to an “always false” statement within an if condition.

Rule 14.4 (Required) - The controlling expression of an if statement and the controlling expression of
an iteration-statement shall have essentially Boolean type.

Found 44 violations to this rule.

The problem was that we was using integer values in place of Boolean values in flow control
expressions, exploiting the fact that in C every non-zero value is considered as a Boolean False.

Every violation has been easily fixed:

if (var) { ... } → if (var != 0) { ... }

4.3.15 - Control flow

Rule 15.1 (Advisory) - The goto statement should not be used.

We dedicated a slightly longer section to this rule to try to leverage the legendary unconditional
hate against the goto statement.

As a fact, when used properly, the statement can greatly simplify the implementation and
improve the design and efficiency of some, otherwise complicated, operations.

The most widespread usage of the the goto statement is to implement a primitive form of
exception handling and an easy way to rollback partially initialized objects.

Let there is a piece of code that incrementally initialized an object by allocating resources. In
case of an error in the middle of the initialization, i.e. when the object is not fully initialized, we
should be able to restore the environment original state.

In place of several “if...else” statements containing repeated cleanup code or maintaining
several flags to know which parts of the object were already initialized, the goto statement
greatly simplify the work to be (un)done and produces a cleaner and more readable code.

An example follows.

if (init_resource(r1) == FAIL)
 goto e0;
if (init_resource(r2) == FAIL)
 goto e1;
...

33

if (init_resource(r10) == FAIL)
 goto e9;
...
 return SUCCESS;

 /* Rollback section */
e9: release_resource(r9);
...
e1: release_resource(r1);
e0: return FAIL;

The alternative would be a very deeply nested (and awful) if...else “forest” with a lot of
repeated code to correctly release the resources.

if (init_resource(r1) == SUCCESS) {
 if (init_resource(r2) == SUCCESS) {
 if (init_resource(r3) == SUCCESS) {
 ... /* Very deep nesting */
 } else {
 release_resource(r2);
 release_resource(r1);
 }
 } else {
 release_resource(r1);
}

When used wisely, to goto statement is thus considered safe and, indeed, gives a clear vision of
what the code does.

Project deviation

The described “rollback-on-exception” pattern has been used wherever is convenient to do so.
In particular the violation has been found within the execve, buddy and ext2 implementations.

Rule 15.2 (Required) - The goto statement shall jump to a label declared later in the same function.

Compliant.

Rule 15.3 (Required) - Any label referenced by a goto statement shall be declared in the same block,
or in any block enclosing the goto statement.

Compliant.

Rule 15.4 (Advisory) - There should be no more than one break or goto statement used to terminate
any iteration statement.

Specific deviations

There are five violations (tty.c, execve.c) because of a loop interrupted in different points using
the break statement. A modification in such a specific case would be easy but would also result
is a less clear code.

34

Rule 15.5 (Advisory) - A function should have a single point of exit at the end.

Project deviation

Wherever a sanity check at the beginning of a non trivial function is not satisfied then the
function returns immediately with an error code. With such premature unsatisfied conditions an
if...else statement would cause the function code to be immediately indented just for
precondition checking and that is considered a bad-design choice.

Early returns are generally inserted in syscalls entry points, i.e. where the function arguments
values cannot be trusted; inter-kernel calls input parameters are generally assumed to be safe
and respect the function preconditions.

Example within the close syscall implementation

int sys_close(int fd)
{
 if (fd < 0)
 return -EBADF;
 ...
 return 0;
}

Rule 15.6 (Required) - The body of an iteration-statement or a selection-statement shall be a
compound-statement.

Skipping single statement braces-encapsulation is a very common ad accepted convention.

Project deviation

We’ve received 291 violations to this rule. Single statement are generally not encapsulated
within braces for a code design choice. This practice is too widespread and affirmed across the
project to be changed.

There are some exceptions to the following practice, and are generally guided by good sense
and code readability. Follows some examples.

The rule is followed when the nesting level is greater than one

if(condition1) { /* This brace can be potentially omitted */
 if (confition2)
 a = b;
}

Or to avoid one of the most infamous source of errors in C programming: the else-ownership-
ambiguity. Because the language ignores indentation without braces, there is no way of
separating this:

if(one)
 if(two)
 foo();
 else /* This else is associated with the second if */
 bar();

From this (misleading) version of the very same code snip:

if(one)

35

 if(two)
 foo();
else /* This else statement is associated with the second if */
 bar();

The else statement is always associated to the closer if statement.

To avoid this error prone language details, we prefer to use braces in such cases.

Rule 15.7 (Required) - All if...else if constructs shall be terminated with an else statement.

Specific deviation

There is one case, with the SLAB allocator (slab.c) implementation where there is an
“if...else if” statement without a default else. In this case, the else clause would be
empty (required by MISRA but not accepted by the Author).

4.3.16 - Switch statements

Rule 16.1 (Required) - All switch statements shall be well-formed.

Compliant.

Rule 16.2 (Required) - A switch label shall only be used when the most closely-enclosing compound
statement is the body of a switch statement.

Compliant.

Rule 16.3 (Required) - An unconditional break statement shall terminate every switch clause.

There were some violations were switch statements doesn’t have the break to use a fall-
through approach share some code. The required change to attain compliance was minimal so
we’ve adjusted it.

Rule 16.4 (Required) - Every switch statement shall have a default label.

In one switch statement the default label was (technically superflous but) missing.

Fixed for compliance.

Rule 16.5 (Required) - A default label shall appear as either the first or the last switch label of a
switch statement.

Compliant.

36

Rule 16.6 (Required) - Every switch statement shall have at least two switch clauses

A trivial switch was present and has been removed.

Rule 16.7 (Required) - A switch expression shall not have essentially Boolean type.

Compliant.

4.3.17 - Functions

Rule 17.1 (Required) - The features of “<stdarg.h>” shall not be used.

Specific deviations

There were two deviations, one within the panic function and one within the kprintf.

Both the functions use variable arguments to implement format strings processing and thus to
dynamically print additional information during logging.

Rule 17.2 (Required) - Functions shall not call themselves, either directly or indirectly.

Is a well known fact that recursion is considered a bad practice in embedded applications
(generally to avoid stack overruns over the data section). As such, it has been avoided with just
two exceptions:

Specific deviation

There is an indirect recursion path within the SLAB allocator implementation:

1. The kmalloc uses the SLAB allocator.

2. The SLAB allocator, slab_cache_alloc, uses kmalloc to allocate some control
structures.

The recursion happens only when the SLAB allocator context has the flag SLAB_EMBED_BUFCTL
turned OFF.

The SLAB allocator uses the kmalloc using a SLAB allocator context that has the
SLAB_EMBED_BUFCTL turned ON.

Because of the above conditions the recursion is immediatelly stopped, giving a maximum
nesting level of 2:

kmalloc → slab_cache_alloc → kmalloc → slab_cache_alloc → return

Specific deviation

Similar to the previous one, but with respect to the kfree and the slab_cache_free functions.

37

Rule 17.3 (Mandatory) - A function shall not be declared implicitly.

Compliant. The rule check is enforced by the compiler.

Rule 17.4 (Mandatory) - All exit paths from a function with non-void return type shall have an explicit
return statement with an expression.

Compliant.

Compliance is additionally enforced by the compiler.

Rule 17.5 (Advisory) - The function argument corresponding to a parameter declared to have an array
type shall have an appropriate number of element.

Compliant.

Rule 17.6 (Mandatory) - The declaration of an array parameter shall not contain the static keyword
between the [].

Compliant.

Rule 17.7 (Required) - The value returned by a function having non-void return type shall be used.

There were 50 violations and all were addressed.

In the cases where we don’t require the return value and it can be safely ignored the function
call has been prefixed with a cast to void type (explicit return type cast).

For example, to ignore the read return value explicitly:

(void)read(fd, buf, 3);

Rule 17.8 (Advisory) - A function parameter should not be modified.

Project deviation

Where is conventient to do so, e.g. counters that should be decremented or pointers that are
accessed sequentially with the same step of the declared type, the function argument value is
modified and thus a deviation is introduced.

4.3.18 - Pointers and arrays

Rule 18.1 (Required) - A pointer resulting from arithmetic on a pointer operand shall address an
element of the same array as that pointer operand.

38

Three violations were found. One has been fixed and the other two are false positives.

False Positive

The tool is unable to infer that the panic function never returns. Panic, is the function we call if
we detect an out of bounds access tentative.

if (index >= ARRAY_SIZE)
 panic(“out of bounds access detected”); /* Never returns */
arr[index] = val; /* Safe assignment */

False Positive

The tool wasn’t able to detect that an index is indirectly checked

 for (fd0 = 0; fd0 < OPEN_MAX; fd0++)
 ...
 for (fd1 = fd0 + 1; fd1 < OPEN_MAX; fd1++)
 ...
 if (fd1 >= OPEN_MAX)
 return -EMFILE;
 current_task->fds[fd0].fil = file0; /* Violation indication here */

Because fd1 is always greater than fd0, if fd1 < OPEN_MAX then there is no need to check
fd0.

Rule 18.2 (Required) - Subtraction between pointers shall only be applied to pointers that address
elements of the same array.

Compliant.

Note: in some contexts, e.g. paging code, we consider the whole process address space as a
single array of bytes, the process memory array.

Rule 18.3 (Required) - The relational operators >, >=, < and <= shall not be applied to objects of
pointer type except where they point into the same object.

Refer to MISRA C 2012 Rule 18.2.

Rule 18.4 (Advisory) - The +, -, += and -= operators should not be applied to an expression of pointer
type.

Project violation

Pointer arithmetic has been used extensively in the project to easily move a pointer into an array
of objects and to compute the index of an array element from its address.

Example:

struct mystryct ar[10];
struct mystruct *p = get_element(ar);
size_t index = p - ar; /* get p index */

39

Rule 18.5 (Advisory) - Declarations should contain no more than two levels of pointer nesting.

Compliant.

Rule 18.6 (Required) - The address of an object with automatic storage shall not be copied to another
object that persists after the first object has ceased to exist.

Compliant.

Rule 18.7 (Required) - Flexible array members shall not be declared.

Compliant.

Rule 18.8 (Required) - Variable-length array types shall not be used.

Compliant.

4.3.19 - Overlapping storage

We’ve found no violations to this section. The rules are enumerated for completeness.

Rule 19.1 (Mandatory) - An object shall not be assigned or copied to an overlapping object.

Rule 19.2 (Advisory) - The union keyword should not be used.

4.3.20 - Preprocessing directives

We’ve found no violations to this section. The rules are enumerated for completeness.

Rule 20.1 (Advisory) - #include directives should only be preceded by preprocessor directives or
comments.

Rule 20.2 (Required) - The ', " or \ characters and the /* or // character sequences shall not occur
in a header file name.

40

Rule 20.3 (Required) - The #include directive shall be followed by either a <filename> or "filename"
sequence.

Rule 20.4 (Required) - A macro shall not be defined with the same name as a keyword.

Rule 20.5 (Advisory) - #undef should not be used.

Rule 20.6 (Required) - Tokens that look like a preprocessing directive shall not occur within a macro
argument.

Rule 20.7 (Required) - Expressions resulting from the expansion of macro parameters shall be
enclosed in parentheses.

Rule 20.8 (Required) - The controlling expression of a #if or #elif preprocessing directive shall
evaluate to 0 or 1

Rule 20.9 (Required) - All identifiers used in the controlling expression of #if or #elif preprocessing
directives shall be #define’d before evaluation

Rule 20.10 (Advisory) - The # and ## preprocessor operators should not be used

Rule 20.11 (Required) - A macro parameter immediately following a # operator shall not immediately
be followed by a ## operator.

Rule 20.12 (Required) - A macro parameter used as an operand to the # or ## operators, which is
itself subject to further macro replacement, shall only be used as an operand to these operators.

Rule 20.13 (Required) - A line whose first token is # shall be a valid preprocessing directive.

Rule 20.14 (Required) - All #else, #elif and #endif preprocessor directives shall reside in the same
file as the #if, #ifdef or #ifndef directive to which they are related.

41

4.3.21 - Standard libraries

Almost every rule listed by this section is more dedicated to user-space applications.

The kernel usage of the standard library functions and macros is limited to the ones contained within
the “string.h”, “fcntl.h”, “ctype.h”, “stdint.h” header files and to a couple of structures
within the forbidden “time.h” and “signal.h”

Rule 21.1 (Required) - #define and #undef shall not be used on a reserved identifier or reserved
macro name.

Originally, there were plenty violations to this rule because every header file include guard was
starting with an underscore and that is considered a reserved macro name. Easily fixed.

Rule 21.2 (Required) - A reserved identifier or macro name shall not be declared.

Specific Deviation

The ctime member of the inode structure has signaled as a reserved identifier.

We’re not strictly required to use such an identifier since is member of a structure not directly
influencing the POSIX interface but we’ve decided to introduce a violation to use the
“traditional” inode creation time used by UNIX like systems.

Rule 21.3 (Required) - The memory allocation and deallocation functions of <stdlib.h> shall not be
used.

Compliant.

Rule 21.4 (Required) - The standard header file <setjmp.h> shall not be used.

Compliant.

Rule 21.5 (Required) - The standard header file <signal.h> shall not be used.

The project contains two deviations due to required compliance to the POSIX standard

Specific deviation

The header file has been included by “task.h” header file to peek the definition of the
sigset_t type. The definition is used within the task structure.

struct task {
 ...
 sigset_t sigpend;
 sigset_t sigmask;

42

 ...
};

Specific deviation

The header file has been included by “sys.h” header file to peek the definition of the sigaction
type. The definition is used by the sigaction syscall implementation.

int sys_sigaction(int sig, const struct sigaction *act,
 struct sigaction *oact);

To be compliant, the kernel would have to define its own sigaction and sigset_t types, but
doing so can introduce inconsistencies with the versions provided by the standard C library.

Rule 21.6 (Required) - The Standard Library input/output functions shall not be used.

Specific deviation

The kernel function kvprintf internally uses the vsnprintf to print the format string within a
character array before send the result to the kernel log output. The vsnprintf is considered
secure because of boundary checking.

Rule 21.7 (Required) - The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used

Compliant.

Rule 21.8 (Required) - The library functions abort, exit, getenv and system of <stdlib.h> shall
not be used

Compliant.

We are the providers of the the exit function backend as a syscall (sys_exit).

Rule 21.9 (Required) - The library functions bsearch and qsort of <stdlib.h> shall not be used

Compliant.

Rule 21.10 (Required) - The Standard Library time and date functions shall not be used.

Specific deviation

The standard header file “time.h” has been included by “sys.h” to peek the definition of the
timespec structure. The definition is used by the nanosleep syscall implementation.

int sys_nanosleep(const struct timespec *req, struct timespec *rem);

The tool warning is propagated to every file that directly or indirectly includes sys.h.

To be compliant with MISRA C, the kernel would have to define its own timespec type, but
doing so can introduce inconsistencies with the version provided by the standard C library.

43

Rule 21.11 (Required) - The standard header file <tgmath.h> shall not be used.

Compliant.

Rule 21.12 (Advisory) - The exception handling features of <fenv.h> should not be used.

Compliant.

4.3.22 - Resources

We’ve found no violations to this section. Thus we limit to enumerate the rules as a reference.

Rule 22.1 (Required) - All resources obtained dynamically by means of Standard Library functions
shall be explicitly released.

Rule 22.2 (Mandatory) - A block of memory shall only be freed if it was allocated by means of a
Standard Library function.

Rule 22.3 (Required) - The same file shall not be open for read and write access at the same time on
different streams.

Rule 22.4 (Mandatory) - There shall be no attempt to write to a stream which has been opened as read-
only.

Rule 22.5 (Mandatory) - A pointer to a FILE object shall not be dereferenced.

Rule 22.6 (Mandatory) - The value of a pointer to a FILE shall not be used after the associated stream
has been closed.

44

4.4 Conformance Matrix

Static Analysis Tools: Understand v4.0, PC-Lint

Complier: GNU gcc 7.3.0.

First pass violations: violations found in the original codebase (v0.1.1).

Final pass violations: violations found in the final codebase (v.0.2.0).

Final pass ignored: false positives.

Type First Pass
Violations

Final Pass
Violations

Final Pass
Ignored

Check Method

Directive 1.1 Required 0 0 0 PC-Lint

Directive 2.1 Required 0 0 0 Compiler / PC-Lint

Directive 3.1 Required 0 0 0 PC-Lint

Directive 4.1 Required 0 0 0 PC-Lint

Directive 4.2 Advisory 0 0 0 PC-Lint

Directive 4.3 Required 12 0 0 Understand

Directive 4.4 Advisory 0 0 0 Understand

Directive 4.5 Advisory 1 1 0 Understand

Directive 4.6 Advisory 406 405 0 Understand

Directive 4.7 Required 43 0 0 PC-Lint

Directive 4.8 Advisory 85 71 0 Understand

Directive 4.9 Advisory 0 0 0 PC-Lint

Directive 4.10 Required 0 0 0 Understand

Directive 4.11 Required 0 0 0 PC-Lint

Directive 4.12 Required N 0 0 Understand

Directive 4.13 Advisory 0 0 0 PC-Lint

Rule 1.1 Required 0 0 0 PC-Lint

Rule 1.2 Advisory 27 0 27 PC-Lint

Rule 1.3 Required 0 0 0 PC-Lint

Rule 2.1 Required 0 0 0 Understand

Rule 2.2 Required 38 0 38 PC-Lint

Rule 2.3 Advisory 1 0 1 Understand

Rule 2.4 Advisory 1 0 1 Understand

Rule 2.5 Advisory 63 0 32 Understand

Rule 2.6 Advisory 0 0 0 PC-Lint

Rule 2.7 Advisory 14 0 11 Understand

Rule 3.1 Required 114 0 113 Understand

45

Rule 3.2 Required 0 0 0 Understand

Rule 4.1 Required 0 0 0 Understand

Rule 4.2 Required 0 0 0 Understand

Rule 5.1 Required 0 0 0 Understand

Rule 5.2 Required 0 0 0 Understand

Rule 5.3 Required 6 0 0 Understand

Rule 5.4 Required 0 0 0 Understand

Rule 5.5 Required 2 0 0 Understand

Rule 5.6 Required 0 0 0 Understand

Rule 5.7 Required 4 0 0 Understand

Rule 5.8 Required 0 0 0 Understand

Rule 5.9 Advisory 2 0 0 Understand

Rule 6.1 Required 0 0 0 Understand

Rule 6.2 Required 0 0 0 Understand

Rule 7.1 Required 49 0 39 PC-Lint

Rule 7.2 Required 31 0 31 Understand

Rule 7.3 Required 0 0 0 Understand

Rule 7.4 Required 1 0 0 PC-Lint

Rule 8.1 Required 4 0 0 PC-Lint

Rule 8.2 Required 9 0 0 Understand

Rule 8.3 Required 16 0 0 Understand

Rule 8.4 Required 79 2 0 Understand

Rule 8.5 Required 7 0 0 Understand

Rule 8.6 Required 65 0 65 Understand

Rule 8.7 Advisory 25 17 5 Understand

Rule 8.8 Required 4 0 2 Understand

Rule 8.9 Required 19 15 0 Understand

Rule 8.10 Required 0 0 0 Understand

Rule 8.11 Advisory 0 0 0 Understand

Rule 8.12 Required 0 0 0 Understand

Rule 8.13 Advisory 55 17 0 PC-Lint

Rule 8.14 Required 0 0 0 Understand

Rule 9.1 Mandatory 7 0 6 PC-Lint

Rule 9.2 Required 0 0 0 PC-Lint

Rule 9.3 Required 0 0 0 PC-Lint

Rule 9.4 Required 0 0 0 PC-Lint

Rule 9.5 Required 32 0 0 PC-Lint

Rule 10.1 Required 264 99 81 PC-Lint

Rule 10.2 Required 0 0 0 PC-Lint

Rule 10.3 Required 320 260 0 PC-Lint

46

Rule 10.4 Required 306 306 0 PC-Lint

Rule 10.5 Advisory 0 0 0 PC-Lint

Rule 10.6 Required 10 3 0 PC-Lint

Rule 10.7 Required 35 0 0 PC-Lint

Rule 10.8 Required 16 0 0 PC-Lint

Rule 11.1 Required 90 0 90 PC-Lint

Rule 11.2 Required 0 0 0 PC-Lint

Rule 11.3 Required 64 62 0 PC-Lint

Rule 11.4 Advisory 89 16 32 PC-Lint

Rule 11.5 Advisory 44 41 0 PC-Lint

Rule 11.6 Required 169 28 101 PC-Lint

Rule 11.7 Required 0 0 0 PC-Lint

Rule 11.8 Required 5 0 0 PC-Lint

Rule 11.9 Required 8 0 0 PC-Lint

Rule 12.1 Advisory 166 157 0 PC-Lint

Rule 12.2 Required 2 0 0 PC-Lint

Rule 12.3 Advisory 18 0 8 PC-Lint

Rule 12.4 Advisory 0 0 0 PC-Lint

Rule 13.1 Required 0 0 0 PC-Lint

Rule 13.2 Required 0 0 0 PC-Lint

Rule 13.3 Advisory 15 9 0 PC-Lint

Rule 13.4 Advisory 42 15 0 PC-Lint

Rule 13.5 Required 3 0 1 PC-Lint

Rule 13.6 Mandatory 0 0 0 PC-Lint

Rule 14.1 Required 0 0 0 PC-Lint

Rule 14.2 Required 0 0 0 PC-Lint

Rule 14.3 Required 1 0 0 PC-Lint

Rule 14.4 Required 44 0 0 PC-Lint

Rule 15.1 Advisory 8 8 0 Understand

Rule 15.2 Required 0 0 0 Understand

Rule 15.3 Required 0 0 0 Understand

Rule 15.4 Advisory 6 0 5 Understand

Rule 15.5 Advisory 72 69 0 Understand

Rule 15.6 Required 291 252 0 Understand

Rule 15.7 Required 1 1 0 Understand

Rule 16.1 Required 0 0 0 Manual

Rule 16.2 Required 0 0 0 Understand

Rule 16.3 Required 5 0 0 Understand

Rule 16.4 Required 1 0 0 Understand

Rule 16.5 Required 0 0 0 Understand

47

Rule 16.6 Required 1 0 0 Understand

Rule 16.7 Required 0 0 0 Manual

Rule 17.1 Required 3 2 0 Understand

Rule 17.2 Required 9 9 0 Understand

Rule 17.3 Mandatory 0 0 0 Understand

Rule 17.4 Mandatory 0 0 0 Compiler / PC-Lint

Rule 17.5 Advisory 0 0 0 PC-Lint

Rule 17.6 Mandatory 0 0 0 Understand

Rule 17.7 Required 50 0 0 Understand

Rule 17.8 Advisory 49 23 0 Understand

Rule 18.1 Required 3 0 2 PC-Lint

Rule 18.2 Required 0 0 0 PC-Lint

Rule 18.3 Required 0 0 0 PC-Lint

Rule 18.4 Advisory 30 28 0 PC-Lint

Rule 18.5 Advisory 0 0 0 PC-Lint

Rule 18.6 Required 0 0 0 PC-Lint

Rule 18.7 Required 0 0 0 PC-Lint

Rule 18.8 Required 0 0 0 PC-Lint

Rule 19.1 Mandatory 0 0 0 PC-Lint

Rule 19.2 Advisory 0 0 0 Understand

Rule 20.1 Advisory 0 0 0 Understand

Rule 20.2 Required 0 0 0 Understand

Rule 20.3 Required 0 0 0 Understand

Rule 20.4 Required 0 0 0 Understand

Rule 20.5 Advisory 0 0 0 Understand

Rule 20.6 Required 0 0 0 Understand

Rule 20.7 Required 0 0 0 PC-Lint

Rule 20.8 Required 0 0 0 PC-Lint

Rule 20.9 Required 0 0 0 PC-Lint

Rule 20.10 Advisory 0 0 0 Understand

Rule 20.11 Required 0 0 0 Understand

Rule 20.12 Required 0 0 0 PC-Lint

Rule 20.13 Required 0 0 0 Understand

Rule 20.14 Required 0 0 0 Understand

Rule 21.1 Required 120 0 0 Understand

Rule 21.2 Required 2 2 0 Understand

Rule 21.3 Required 0 0 0 Understand

Rule 21.4 Required 0 0 0 Understand

Rule 21.5 Required 2 0 3 Understand

Rule 21.6 Required 0 0 0 Understand

48

Rule 21.7 Required 0 0 0 Understand

Rule 21.8 Required 0 0 0 Understand

Rule 21.9 Required 0 0 0 Understand

Rule 21.10 Required 43 0 43 Understand

Rule 21.11 Required 0 0 0 Understand

Rule 21.12 Advisory 0 0 0 Understand

Rule 22.1 Required 0 0 0 PC-Lint

Rule 22.2 Mandatory 0 0 0 PC-Lint

Rule 22.3 Required 0 0 0 PC-Lint

Rule 22.4 Mandatory 0 0 0 PC-Lint

Rule 22.5 Mandatory 0 0 0 PC-Lint

Rule 22.6 Mandatory 0 0 0 PC-Lint

4.4.1 - Recap

Section Subject First Pass
Violations

Final Pass
Violations

Final Pass
Ignored

Directive 1 Implementation 0 0 0

Directive 2 Compilation and build 0 0 0

Directive 3 Requirements traceability 0 0 0

Directive 4 Code design 547 477 0

Rule 1 Standard C environment 27 0 27

Rule 2 Unused code 117 0 82

Rule 3 Comments 114 0 113

Rule 4 Character sets and lexical conventions 0 0 0

Rule 5 Identifiers 14 0 0

Rule 6 Types 0 0 0

Rule 7 Literals and constants 81 0 70

Rule 8 Declarations and definitions 283 47 72

Rule 9 Initialization 39 0 6

Rule 10 Essential type model 951 667 81

Rule 11 Pointer type conversions 467 147 223

Rule 12 Expressions 186 157 0

Rule 13 Side Effects 60 24 1

Rule 14 Control Statement Expressions 45 0 0

Rule 15 Control Flow 378 330 5

Rule 16 Switch statements 7 0 0

Rule 17 Functions 111 34 0

Rule 18 Pointers and arrays 33 28 2

49

Rule 19 Overlapping storage 0 0 0

Rule 20 Preprocessing directives 0 0 0

Rule 21 Standard library 167 2 46

Rule 22 Resources 0 0 0

TOTAL 3627 1912 728

50

5 MISRA C: 2004

5.1 Brief

In 2004, "Guidelines for the use of the C language in critical systems", or MISRA-C 2004 was
produced. The standard, compared to its predecessor (MISRA-C 1998), contains many substantial
changes to the guidelines, including a complete renumbering of the rules.

MISRA C 2004 contains 142 rules, of which 122 required and 20 advisory. They are divided into 21
topical categories.

Differently from the detailed analysis conduced for the MISRA C 2012 rules set, instead to enumerate
all the rules and the details, our attention will be mainly focused on the non-conformances and the
motivations behind the violations.

Wherever there is a rule deviation that is compatible with a MISRA 2012 directive or rule a reference
to that is inserted to avoid duplication.

Because only only the Understand tool will be used for this analysis, some rules are not automatically
checked at all.

5.2 Rules

5.2.1 - Identifiers

Rule 5.6 (Advisory) - No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure member and union member names.

Refer to MISRA 2004 Rule 5.7.

Rule 5.7 (Advisory) - No identifier name should be reused.

This rule mandates the usage of a different name for every variable within the project context.

Project deviation

This rule has not been followed because it requires a huge, and - in our opinion - senseless, code
refactory.

51

5.2.2 - Types

Rule 6.3 (Advisory) - Typedefs that indicate size and signedness should be used in place of the basic
numerical types.

Refer to MISRA 2012 Directive 4.6.

5.2.3 - Declarations and definitions

Rule 8.5 (Required) - There shall be no definitions of objects or functions in a header file.

For some tools this rule indirectly forbids usage of inline functions.

Project deviation

The kernel contains some inline functions where has been considered useful to do so.

Wherever a very short code sequence can be implemented as a macro, generally when a return
value is not required, macro usage has been preferred.

Obviously, compliance can be obtained by avoiding inline functions (that indeed are not even
included by the C89 version of the standard) but for very short code snip would be an overkill
to define it as a stand-alone function.

Rule 8.7 (Required) - Objects shall be defined at block scope if they are only accessed from within a
single function.

Refer to MISRA 2012 Rule 8.9.

Rule 8.10 (Required) - All declarations and definitions of objects or functions at file scope shall have
internal linkage unless external linkage is required.

False positives

The Understand tool indicates violations for functions that are referenced from the assembly
language code.

Rule 8.11 (Required) - The static storage class specifier shall be used in definitions and declarations
of objects and functions that have internal linkage.

Refer to MISRA 2004 Rule 8.10.

52

5.2.4 - Arithmetic type conversions

Rule 10.6 (Required) - A “U” suffix shall be applied to all constants of unsigned type.

Refer to MISRA 2012 Rule 7.2.

5.2.5 - Control flow

Rule 14.4 (Required) - The goto statement shall not be used.

Refer to MISRA 2012 Rule 15.1.

Rule 14.6 (Required) - For any iteration statement there shall be at most one break statement used for
loop termination.

Refer to MISRA 2012 Rule 15.4.

Rule 14.7 (Required) - A function shall have a single point of exit at the end of the function.

Refer to MISRA 2012 Rule 15.5.

Rule 14.8 (Required) - The statement forming the body of a switch, while, do...while or for
statement shall be a compound statement.

Refer to MISRA 2012 Rule 15.6.

Rule 14.9 (Required) - An if (condition) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another if statement.

Refer to MISRA 2012 Rule 15.6.

Rule 14.10 (Required) - All if ... else if constructs shall be terminated with an else clause.

Refer to MISRA 2012 Rule 15.7.

5.2.6 - Functions

Rule 16.1 (Required) - Functions shall not be defined with variable numbers of arguments.

53

Specific deviations

There are two violations and both are for the same motivation. The non-compliant functions
purpose is activity logging by using the same, well known, printf format strings interface.

Non-compliant functions prototypes:

void kprintf(const char *fmt, ...);

void panic(const char *fmt, ...);

Rule 16.2 (Required) - Functions shall not call themselves, either directly or indirectly.

Refer to MISRA 2012 Rule 17.2.

Rule 16.9 (Required) - A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

In C wherever a function identifier is used in an expression and is not the operand of the unary
& operator, it is implicitly converted to a pointer.

Project deviation

Function identifier implicit pointer conversion is so widely accepted and radicated within the
kernel that is not worth to be changed.

5.2.7 - Preprocessing directives

Rule 19.7 (Advisory) - A function should be used in preference to a function-like macro.

Project deviation

Function-like macros are used anywere is convenient to do so. When a value should be returned
inline function are preferred.

Rule 19.10 (Required) - In the definition of a function-like macro, each instance of a parameter shall
be enclosed in parentheses, unless it is used as the operand of # or ##.

False positives

Three violations were found, all with the following form:

#define list_container(link, type, member) \
 ((type *) ((char *)(link) - offsetof(type, member)))

The violation is caused by the “type” parameter. This parameter cannot be parenthesized within
the macro body for language syntax constraints.

54

5.2.8 - Standard libraries

Rule 20.4 (Required) - Dynamic heap memory allocation shall not be used.

Refer to MISRA 2012 Directive 4.12.

Rule 20.6 (Required) - The macro offsetof, in library “<stddef.h>”, shall not be used.

Specific deviation

The macro is used to implement a core function within the kernel-lists implementation.

A list node is embedded within the linked structure and the offsetof macro is used to get the
container from the embedded list link.

For more details refer to MISRA 2012 Rule 11.3.

Rule 20.8 (Required) - The signal handling facilities of “<signal.h>” shall not be used.

Refer to MISRA 2012 Rule 21.5.

Rule 20.9 (Required) - The input output library “<stdio.h>” shall not be used in production code.

Refer to MISRA 2012 Rule 21.6.

Rule 20.12 (Required) - The time handling functions of library “<time.h>” shall not be used.

Refer to MISRA 2012 Rule 21.10.

55

5.3 Conformance Matrix

Static Analysis Tools: Understand v4.0

Complier: GNU gcc 7.3.0

First pass violations: violations found in the POST MISRA-C 2012 codebase.

Final pass violations: violations found in the final codebase (v0.2.0).

Final pass ignored: false positives.

Type First Pass
Violations

Final Pass
Violations

Final Pass
Ignored

Check Method

Rule 2.1 Required 12 0 0 Understand

Rule 2.2 Required 66 0 0 Understand

Rule 2.3 Required 0 0 0 Understand

Rule 2.4 Advisory 2 0 0 Understand

Rule 4.1 Required 0 0 0 Understand

Rule 4.2 Required 0 0 0 Understand

Rule 5.1 Required 0 0 0 Understand

Rule 5.2 Required 6 0 0 Understand

Rule 5.3 Required 0 0 0 Understand

Rule 5.4 Required 45 0 0 Understand

Rule 5.5 Advisory 2 0 0 Understand

Rule 5.6 Advisory 146 126 0 Understand

Rule 5.7 Advisory 897 897 0 Understand

Rule 6.3 Required 406 405 0 Understand

Rule 6.4 Required 0 0 0 Understand

Rule 6.5 Required 0 0 0 Understand

Rule 7.1 Required 0 0 0 Understand

Rule 8.3 Required 24 0 0 Understand

Rule 8.5 Required 49 45 0 Understand

Rule 8.6 Required 1 0 0 Understand

Rule 8.7 Required 19 15 0 Understand

Rule 8.8 Required 16 0 0 Understand

Rule 8.9 Required 0 0 0 Understand

Rule 8.10 Required 37 0 4 Understand

Rule 8.11 Required 35 0 2 Understand

Rule 8.12 Required 0 0 0 Understand

Rule 9.3 Required 0 0 0 Understand

56

Rule 10.6 Required 32 31 0 Understand

Rule 12.6 Advisory 0 0 0 Understand

Rule 12.12 Required 0 0 0 Understand

Rule 13.3 Required 0 0 0 Understand

Rule 13.6 Required 0 0 0 Understand

Rule 14.1 Required 0 0 0 Understand

Rule 14.3 Required 0 0 0 Understand

Rule 14.4 Required 8 8 0 Understand

Rule 14.5 Required 8 1 0 Understand

Rule 14.6 Required 6 5 0 Understand

Rule 14.7 Required 71 68 0 Understand

Rule 14.8 Required 23 20 0 Understand

Rule 14.9 Required 267 265 0 Understand

Rule 14.10 Required 1 1 0 Understand

Rule 15.1 Required 0 0 0 Understand

Rule 15.2 Required 5 0 0 Understand

Rule 15.3 Required 1 0 0 Understand

Rule 15.5 Required 1 0 0 Understand

Rule 16.1 Required 4 2 2 Understand

Rule 16.2 Required 9 9 0 Understand

Rule 16.3 Required 0 0 0 Understand

Rule 16.4 Required 0 0 0 Understand

Rule 16.5 Required 8 0 0 Understand

Rule 16.9 Required 61 61 0 Understand

Rule 17.5 Advisory 0 0 0 Understand

Rule 18.4 Required 0 0 0 Understand

Rule 19.1 Advisory 0 0 0 Understand

Rule 19.2 Advisory 0 0 0 Understand

Rule 19.3 Required 0 0 0 Understand

Rule 19.5 Required 0 0 0 Understand

Rule 19.6 Required 0 0 0 Understand

Rule 19.7 Advisory 35 35 0 Understand

Rule 19.9 Required 0 0 0 Understand

Rule 19.10 Required 5 0 3 Understand

Rule 19.11 Required 1 0 0 Understand

Rule 19.12 Required 0 0 0 Understand

Rule 19.13 Advisory 0 0 0 Understand

Rule 19.14 Required 0 0 0 Understand

Rule 19.15 Required 0 0 0 Understand

Rule 19.17 Required 0 0 0 Understand

57

Rule 20.1 Required 35 0 0 Understand

Rule 20.2 Required 35 0 0 Understand

Rule 20.4 Required 0 0 0 Understand

Rule 20.5 Required 0 0 0 Understand

Rule 20.6 Required 40 40 0 Understand

Rule 20.7 Required 0 0 0 Understand

Rule 20.8 Required 2 2 0 Understand

Rule 20.9 Required 4 1 0 Understand

Rule 20.10 Required 0 0 0 Understand

Rule 20.11 Required 0 0 0 Understand

Rule 20.12 Required 1 1 0 Understand

Rule 21.1 Required 0 0 0 Understand

5.3.1 - Recap

NA: Not Automatically checked via a static analysis tool. Best effort has been followed to avoid
violations.

Section Subject First Pass
Violations

Final Pass
Violations

Final Pass
Ignored

Rule 1 Environment NA NA NA

Rule 2 Language extensions 80 0 0

Rule 3 Documentation NA NA NA

Rule 4 Character sets 0 0 0

Rule 5 Identifiers 1096 1023 0

Rule 6 Types 406 405 0

Rule 7 Constants 0 0 0

Rule 8 Declarations and definitions 181 60 6

Rule 9 Initialization 0 0 0

Rule 10 Arithmetic type conversions 32 31 0

Rule 11 Pointer type conversions NA NA NA

Rule 12 Expressions 0 0 0

Rule 13 Control statement expressions 0 0 0

Rule 14 Control flow 384 368 0

Rule 15 Switch statements 7 0 0

Rule 16 Functions 82 72 2

Rule 17 Pointers and arrays 0 0 0

58

Rule 18 Structures and unions 0 0 0

Rule 19 Preprocessing directives 41 35 3

Rule 20 Standard libraries 117 44 0

Rule 21 Run-time failures 0 0 0

TOTAL 2426 2038 11

59

6 SEI CERT C

6.1.1 - Brief

The CERT C rules were developed by the SEI CERT Coordination Center. The CERT/CC is the
coordination center of the Computer Emergency Response Team (CERT) for the Software Engineering
Institute (SEI) hosted by the Carnegie Mellon University.

This standard provides rules for secure coding in the C programming language. The goal of these rules
and recommendations is to develop safe, reliable, and secure systems, for example by eliminating
undefined behaviors that can lead to exploitable vulnerabilities.

As for MISRA, conformance to the coding rules defined by the standard are a necessary (but not
sufficient) to ensure the safety, reliability, and security of a software system.

CERT’s coding standards are being widely adopted by industry.

6.1.2 - Static Analysis

It is possible to check that C source code complies with CERT C rules and recommendation by means
of inspection alone. However, this is likely to be extremely time-consuming and error prone.

Any realistic process for checking code against CERT C will therefore involve the use of at least one
static analysis tool.

CERT C rules are verified through the CERT C Rosecheckers parser supported by the ROSE analyzer.

The tool is a bit tricky to install to the point that the Authors decided to make it available pre-installed
in a Virtual Machine (https://sourceforge.net/projects/rosecheckers/)2.

Fortunately a quicker way to work exists thanks to a Docker user that decided to share with the
community an image with ROSE and the Rosecheckers ready for use. The solution is similar to the VM
but a bit lighter and faster.

Once you’ve installed Docker (e.g. a Debian package exists) you just have to start the container with
the following command:

$ docker run -ti --rm -v /hostsrc:/src kontotto/rosecheckers /bin/bash

 “-ti” : redirect tty io to the host
 “--rm” : remove the docker container on exit (otherwise on exit is just stopped)
 “-v /hostsrcpath:/src” : map the absolute host src path to the container /src dir.
 “knontotto/rosecheckrs” : the docker-hub user and its docker image
 “/bin/bash” : spawn a shell within the running container

2 I would find less invasive if they’ve made a linux package installable through the common package management tools
(e.g. apt). Probably it would required some maintenance for cross version portability.

60

Now you can enter the /src directory within the container and issue the following command

make CC=rosecheckers

Here is a breakdown, from the SEI website, of how thoroughly Rosecheckers enforces the C Secure
Coding Rules and Recommendations:

Complete 57 Rosecheckers catches all violations of these rules

Partial 45 Rosecheckers catches some, but not all violations of rules

False-Positives 9 These rules could be checked by Rosecheckers, but they will also catch some false positives

Potential 29 These rules are not checked by Rosecheckers

Undoable 32 These rules could not be checked by Rosecheckers due to various limitations in ROSE

Unenforceable 48 These rules could not be checked by any tool that relies purely on static analysis

TOTAL 220

6.1.3 - Taxonomy

The rules and recommendations are subdivided into the following macro areas:

• Preprocessor (PRE)

• Declarations and Initialization (DCL)

• Expressions (EXP)

• Integers (INT)

• Floating Point (FLP)

• Arrays (ARR)

• Characters and Strings (STR)

• Memory Management (MEM)

• Input Output (FIO)

• Environment (ENV)

• Signals (SIG)

• Error Handling (ERR)

• Application Programming Interfaces (API)

• Concurrency (CON)

• Miscelaneous (MSC)

61

• POSIX (POS)

• Microsoft Windows (WIN)

Each rule/recommendation identifier is given by the macro area identifier followed by a numeric suffix.

Numeric values in the range of 00-29 are reserved for recommendations, while values in the range of
30-99 are reserved for rules.

The last version of the standard (v2) as given by the SEI website is composed by 114 rules and 186
recommendations, and is still under construction (20 rules less than how many declared by the
Rosecheckers table above).

Because of the rules and recommendations number, and the already attained compliance to the majority
of them, this document does not enumerate each single rule, but only those where at least a violation
was found.

As a reference, the complete rules list is freely available from the SEI website :

https://wiki.sei.cmu.edu/confluence/display/c/

During the analysis, to be formally compatible with the MISRA C section, we’ll use the Required
keyword in place of Rule and the Advisory keyword in place of Recommendation.

6.1.4 - Declarations and Initialization

DCL00 (Advisory) Declare immutable objects using const or enum.

False positive

A false positive is signaled by this code snip:

uint32_t virt;
fault_addr_get(virt);

The tools suggests to declare the virt variable as const, thinking that its value never changes.
But the fault_addr_get macro function contains some inline assembly code to extract the
page fault address from the dedicated register and assigns it to the variable.

Project deviation

In general, is correct to declare every variable that never changes as const. In some occasions
this is what is informally known as syntactic sugar, that is, a formally correct detail that does
not change the overall functional behavior.

Follows a non compliant code snip found in the paging code.

#define DIR_INDEX(virt) ((uint32_t)(virt) >> 22)
unsigned int di = DIR_INDEX(virt);

62

https://wiki.sei.cmu.edu/confluence/display/c/

Obviously, declaring the variable as const ensures that its value will never change and may
generate more optimal code by some less smart compilers.

DCL01 (Advisory) - Do not reuse variable names in subscopes.

Some function parameters were declared using the same variable name as some global
structures.

struct inode { … };

void function(struct inode *inode) { ... }

The parameters identifiers were properly renamed to don’t clash with global names.

DCL02: (Advisory) - Use visually distinct identifiers.

The tool triggers five violations caused by the following identifiers: current (scheduler.c),
ktask (scheduler.c), need_resched (isr.c), timer_ticks (timer.c) and tss (task.c).

From our perspective the identifiers are visually distinct, thus the violations are ignored.

DCL05 (Advisory) - Use typedefs to improve code readability.

There was a function prototype with two function pointer parameters.

struct slab_cache *slab_cache_create(const char *name, size_t size,
unsigned int align, unsigned int flags,
void (*ctor)(void *), void (*dtor)(void *));

The prototype has been modified to use types defined via the typedef keyword.

typedef void (* slab_obj_ctor_t)(void *obj);
typedef void (* slab_obj_dtor_t)(void *obj);

struct slab_cache *slab_cache_create(const char *name,
 size_t size, unsigned int align, unsigned int flags,
 slab_obj_ctor_t ctor, slab_obj_dtor_t dtor);

DCL13 (Advisory) - Declare function parameters that are pointers to values not changed by the
function as const.

This rule is technically equivalent to the MISRA 2012 Rule 8.13.

Specific deviation

Functions whose pointers are meant to be assigned to a VFS (virtual file system) interface
structure (e.g. struct inode_ops) should respect the types defined by such structures
members. Thus, it is possible that a function parameter is not declared as const even if is not
changed within the function body just to respect the interface requirements and avoid
assignment casts.

63

static struct inode *devfs_lookup(struct inode *dir, const char *name)
{
 /* dir parameter not changed here */
}

/* respect the inode_ops members types to avoid casts */
static const struct inode_ops devfs_inode_ops = {
 .read = devfs_inode_read,
 .write = devfs_inode_write,
 .mknod = devfs_mknod,
 .lookup = devfs_lookup,
};

6.1.5 - Expressions

EXP05 (Advisory) - Do not cast away a const qualification.

This rule is technically equivalent to the MISRA 2012 Rule 11.8.

False positives

The tool signals some false positives all caused by code snips similar to the following:

int pipe_write(struct inode *inod, const void *buf,
 size_t count, off_t off)
{
 const char *ptr = (const char *)buf; /*** Here ***/
 …
}

In particular, after some tests, looks like the tool doesn’t like when a “const void” pointer is
casted into a “const char” pointer.

EXP11 (Advisory) - Do not apply operators expecting one type to data of an incompatible type.

Specific deviation

Almost all the violations were caused by usage of the following widespread macro:

#define list_container(link, type, memb) \
 ((type *) ((char *)(link) - offsetof(type, memb)))

After some tests we’ve realized that the error was due to the conversion from a “char” pointer
to a “type” pointer.

The warning is indeed legitimate because is a risky operation and the cast can generally cause
alignment issues. But in our case is absolutely safe to do so; indeed the macro returns a pointer
to an already instanced variable of type “type” and located at the address returned by the
macro.

64

Project deviation

Is forbidden to convert an integer constant to a pointer type.

#define PAGE_TAB_MAP 0xFFC00000
tab = (uint32_t)PAGE_TAB_MAP;

Unfortunately, within the lowest level kernel code, this type of conversion is sometimes
unavoidable (e.g. memory mapped device registers and paging).

EXP32 (Required) - Do not cast away a volatile qualification.

There were two instances of a volatile int variable casted to an int. Fixed.

EXP36 (Required) - Do not cast between pointers to objects or types with differing alignments.

Generally the warning was caused by kmalloc result pointers that were not casted to the
destination pointer type.

False positive

In “arch/task.c”, the following code snip is signaled as a violation

struct task_ifr { uint32_t a, b, c; } ifr;
uint32_t *p = (uint32_t *)𝔦

The cast can be assumed to be safe since the structure member types are equal to the destination
pointer type. The above code snip is technically equivalent to

uint32_t ifr[3];
uint32_t *p = ifr;

False positive

In “vfs.c”. Given this prototype

struct htable_link *htable_lookup(struct htable_link * const *htable,
 long long key, unsigned int bits);

The tool signals an exception in this assignment

struct htable_link *lnk;
lnk = htable_lookup(inode_htable, KEY(dev,ino), INODE_HTABLE_BITS);

65

a false positive is assumed.

6.1.6 - Integers

Compliance with this section is the most hard to obtain because of the violations, when present, are not
isolated but widespread project-wide because of code design or stylistic motivations.

Advisory recommendations that requires too much invasive interventions or code refactory are left
“as-is”.

INT01 (Advisory) - Use rsize_t or size_t for all integer values representing the size of an object.

Project deviation

Represent a size of an object directly with an “unsigned int” is a very widespread and,
generally, accepted practice.

Huge intervention is required for compliance. Code is left “as-is”.

INT07 (Advisory) - Use only explicitly signed or unsigned char type for numeric values.

Project deviation

Buffers that are supposed to contain ASCII encoded names were declared as simple char arrays.
The sign is not meaningful in this context.

INT13-C: (Advisory) - Use bitwise operators only on unsigned operands.

False positives

The tool generates a lot of false positives here, thus we’ve decided to resolve just few cases and
leave alone the rest (also considering that this is an advisory rule).

For example, just the following “random.c” function generates 11 warinings:

static uint32_t rand_get(void)
{
 uint32_t r;

 r = ((z[0] << 6) ^ z[0]) >> 13;
 z[0] = ((z[0] & 4294967294UL) << 18) ^ r;
 r = ((z[1] << 2) ^ z[1]) >> 27;
 z[1] = ((z[1] & 4294967288UL) << 2) ^ r;
 r = ((z[2] << 13) ^ z[2]) >> 21;
 z[2] = ((z[2] & 4294967280UL) << 7) ^ r;
 r = ((z[3] << 3) ^ z[3]) >> 12;
 z[3] = ((z[3] & 4294967168UL) << 13) ^ r;
 r = z[0] ^ z[1] ^ z[2] ^ z[3];

66

 return r;
}

After some investigations we’ve discovered that the source of the problems is that we’ve used
the uint32_t type in place of unsigned int. The warning disappears as soon as we replace
one type with the other.

INT14 (Advisory) - Avoid performing bitwise and arithmetic operations on the same data.

In low level code is very common to mix bitwise operations with arithmetic.

Project deviation

Most of the violations were caused by the ALIGN_UP and ALIGN_DOWN macros. These two
function-like macros, allows to align a value to a given (next or previous) power of two value
boundary and are very important in kernel code that handles memory addresses (e.g. stack
pointers).

#define ALIGN_UP(val, siz) (((val) + ((siz) - 1)) & ~((siz) - 1))
#define ALIGN_DOWN(val, siz) ((val) & ~((siz) - 1))

We’ve not found another efficient way to do the same job without mixing arithmetic and bitwise
operators.

Specific deviation

Consider the initialization of a page table. We need to set each entry to the mapped physical
address ORed with some access flags.

for (i = 0; i < 1024; i++) /* Identity map the first 4 MB */
 tab[i] = (i * PAGE_SIZE) | PTE_W | PTE_P;

Obviously, to suppress the warning, given that PAGE_SIZE is a power of 2, the multiplication
part can be replaced with a left shift (i << 12) but we think that the current code version is
more clear about what it functionally does.

Some other warning instances of this type were present and, given the advisory nature of the
rule, we’ve decided to leave almost all the code untouched.

INT33 (Required) - Ensure that division and modulo operations do not result in divide-by-zero errors.

There was a division by an input parameter coming from a not trusted source within the
zone_init memory management function.

False positive

Even after the fix, a false positive is still signaled.

if (frame_size == 0) /* Added check */
 return -1;
...
return buddy_init(&ctx->buddy, size / frame_size, frame_size); /** Here **/

Looks like the warning disappears if we move the check just before the return statement.

67

INT34 (Required) - Do not shift a negative number of bits or more bits than exist in the operand.

False positives

Four warnings were triggered by the following code snip:

#define SIGSYS 31
#define SIGUNUSED SIGSYS

#define NSIG (SIGUNUSED + 1)

typedef unsigned long sigset_t;

#define sigaddset(set, n) \
 ((0 < (n) && (n) < NSIG) ? ((*(set) |= (1 << (n))), 0) : -1)

Even if we usually skipped discussions about warnings coming from macros defined within the
standard C library, like sigaddset, we are going to discuss it here because of a false positive.

The tool complains that, before assignment, we should check that (1<<n) fits in a sigset_t
variable. Indeed we don’t do any comparison against the sizeof(sigset_t) but we check that
n is less that NSIG (i.e. 32) and is guaranteed (by the C standard) that an unsigned long is at
least 32 bits so no further checks were performed.

False positives

There are four violations because of the risk to perform a left/right shift for more bits than how
many are available on the operand.

Actually the condition cannot happen because the shift quantity was already checked. The tool
is not able to notice it.

size_t ind, shift;
shift = 10 + sb->log_block_size;
if (shift >= 8 * sizeof(size_t))
 return -1; /*** Enforces the shift safety ***/
...
ind = offset >> shift; /*** Warning given Here ***/

INT36 (Required) - Take care when converting from pointer to integer or integer to pointer.

The architecture independent code is compliant.

Within the architecture dependent code and device drivers is easier to find code that contains
casts from (fixed width) integers to pointers and vice-versa. This is generally safe, enforced by
a context specific knowledge of the pointer size. E.g. in a 32-bit machine is safe to cast a
pointer to and from a uint32_t.

As a reference, some specific deviations are given, the others are similar. All the deviations
similar to the given examples are just ignored.

Specific deviation

Within paging code physical addresses are handled as uint32_t quantities while virtual
addresses are handled as pointers. This is a practical choice to simplify some implementation
operations.

68

For example, a page table is defined as an array of physical addresses OR-ed with some flags. It
is a lot easier to manage it as an array of uint32_t in place of an array of pointers to uint32_t
(also considering that OR-ing pointers and integers is forbidden by another rule...).

Specific deviation

Very often, device drivers uses memory mapped registers and data. In our case the VGA video
memory buffer is memory mapped at a fixed address, defined as VIDEO_BUF with the address
literal value. In this occasion, a casts from integer to a pointer cannot be avoided.

#define VIDEO_BUF (KVBASE + 0xB8000)
uint16_t *buf = (uint16_t *)VIDEO_BUF;

Specific Deviation

The execve syscall generic implementation contain some architecture specific code. The
implementation assumes 32-bit addresses in more than one location mainly caused by the 32-bit
specific elf program headers.

A non trivial code re-engineering is required here and was already within the kernel TODO list.

Interesting fix

A more subtle and particular violation was present. Because of its nice characteristics an in-
depth violation description along with the fix is given.

The getcwd syscall is defined to return a char pointer on success and a NULL pointer on failure.
The syscall implementation, as all the others, in kernel space should be able to pass, somehow,
the errno value to the user space. The adopted general strategy is to return a negative errno
value as a result when the syscall fails.

In user space syscall wrapper, if the kernel syscall returns a negative value, the errno global
variable is set to the negative of such a value before returning to the caller.

In the getcwd implementation the thing is a bit tricky. Indeed the negative value is casted to a
char pointer and the standard C library should be able to see if that value is indeed an error or is
a valid pointer value.

The required condition is that the negative of every possible value is different from every
possible buffer pointer value. Assuming sizeof(uintptr_t)=4 and a max errno value of
131 (as with our current implementation) the condition translates to

bufptr∉[−1 ,−137]=[0 xFFFFFFFF ,0xFFFFFF 7 D]

With our current x86 implementation the user space lives below the kernel start virtual address
0xC0000000 thus the condition always holds. Anyway, speaking in general, this is not a very
safe and portable solution.

The syscall implementation code has been modified to return an int in place of a pointer to
char. The POSIX compliance of getcwd is then maintained by adapting the user space wrapper.

/* Kernel space implementation */
int sys_getcwd(char *buf, size_t size)
{

69

 int res;
 ...
 return dentry_path(current->cwd, buf, size);
}

/* User space wrapper */
char *getcwd(char *buf, size_t size)
{
 char *ret = buf;
 if (syscall(__NR_getcwd, buf, size) < 0)
 ret = NULL;
 return ret;
}

6.1.7 - Arrays

ARR02 (Advisory) - Explicitly specify array dimensions, even if implicitly defined by an initializer.

The arrays that are used only within a translation unit were not declared with an explicit width.

The declaration of the array was indeed following the widespread form:

struct mystruct myarray[] = { … };
#define MYARRAY_LEN (sizeof(myarray) / sizeof(myarray[0]))

The code has been changed to be compliant with this rule.

ARR30 (Required) - Guarantee that array indices are within the valid range.

There were four violations all triggered by the same motivation. A file descriptor, i.e. a signed
integer, coming from user space was not tested whether it was greater than 0 before being used
as an array subscript.

False positive

Even after the corrections, one violation is signaled within the dup2 syscall implementation.

int sys_dup2(int oldfd, int newfd)
{
 int status;

 if (oldfd < 0 || oldfd >= OPEN_MAX || newfd < 0 || newfd >= OPEN_MAX ||
 current_task->fds[oldfd].fil == NULL) {
 return -EBADF; /* Invalid file descriptor */
 }

 if (current_task->fds[newfd].fil != NULL) { /*** <--- Here ***/
 ...
 }
 ...
}

}

70

6.1.8 - Error Handling

ERR33 (Required) - Ensure that return values are compared against the proper type.

One violation was caused by a strlen() return value compared against a uint8_t.

False positives

Four false positives are left. All the signaled violations are caused by code like the following:

size_t seed_siz;
...
if (seed_siz == 0)
 return -1;

This is not a function return value. This is an unsigned integer compared against a signed literal
value, a violation already discussed within the MISRA “Essential type model” chapter.

6.1.9 - Miscelaneous

MSC01 (Advisory) – Strive for logical completeness.

One violation was present and caused by a switch without a default case. Trivially fixed in the
MISRA analysis by adding an empty default case.

MSC05 (Advisory) - Do not manipulate time_t typed values directly.

There were seven violations to this recommendation and all were in the nanosleep syscall
implementation.

The solution to this issue is a cast from time_t values to unsigned long before perform any
arithmetic or logical operation.

MSC12 (Advisory) - Detect and remove code that has no effect.

The macros va_start and va_end were containing a statement with no effect, e.g. the va_start
has bee redefined from:

#define va_start(dst, src) ((void) ((dst) = (va_list)(src)))

To:

#define va_start(dst, src) ((dst) = (va_list)(src))

Another source of violation was the sigemptyset macro, redefined from:

#define sigemptyset(set) (*(set) = 0, 0)

To:

71

#define sigemptyset(set) (*(set) = 0)

6.2 Conformance Matrix

Static Analysis Tools: Rosecheckers with ROSE v0.9.5a

First pass violations: violations found in the POST MISRA-C 2012/2004 analysis.

Final pass violations: violations found in the final codebase (v0.2.0).

Final pass ignored: false positives.

Type First Pass
Violations

POST-MISRA
Violations

Final Pass
Violations

Final Pass
Ignored

Check Method

DCL00 Advisory 35 25 11 1 Rosecheckers

DCL01 Advisory 62 19 0 0 Rosecheckers

DCL02 Advisory 3 5 0 5 Rosecheckers

DCL05 Advisory 2 2 0 0 Rosecheckers

DCL13 Advisory 6 5 0 5 Rosecheckers

EXP05 Advisory 3 5 0 5 Rosecheckers

EXP11 Advisory 67 72 70 0 Rosecheckers

EXP12 Advisory 44 1 0 0 Rosecheckers

EXP36 Required 24 26 0 2 Rosecheckers

INT01 Advisory 79 84 92 0 Rosecheckers

INT07 Advisory 17 17 16 0 Rosecheckers

INT13 Advisory 58 104 15 16 Rosecheckers

INT14 Advisory 24 27 29 0 Rosecheckers

INT33 Required 2 1 0 1 Rosecheckers

INT34 Required 8 9 0 8 Rosecheckers

INT36 Required 26 25 3 19 Rosecheckers

ARR02 Advisory 3 3 0 0 Rosecheckers

ARR30 Required 7 4 0 1 Rosecheckers

ERR33 Required 3 5 0 5 Rosecheckers

MSC01 Advisory 1 0 0 0 Rosecheckers

MSC05 Advisory 3 7 0 0 Rosecheckers

MSC12 Advisory 6 10 0 0 Rosecheckers

72

6.2.1 - Recap

Section Subject First Pass
Violations

 Post MISRA
Violations

Final Pass
Violations

Final Pass
Ignored

DCL Declarations and Initialization 108A 56A 11A 11A

EXP Expressions 114A + 24R 73A + 26R 70A 5A + 2R

INT Integers 178A + 36R 232A + 35R 152A + 3R 16A + 28R

ARR Arrays 7A + 6R 5A + 4R 0 1R

ERR Error Handling 3R 5R 0 5R

MSC Miscelaneous 10A 17A 0 0

Note that in the table the required and advisory violations are separated. For example: 7A + 6R means
that there are 7 violations to advisory rules and 6 deviations to required rules.

73

7 Final Considerations

Coding standards mitigate the effects that the implementation-defined, unspecified and undefined
behaviors of a programming language have on its performance and quality.

While they are of benefit to all projects, some of the more onerous guidelines can be overkill for
projects with lower integrity requirements. A coding standard subset can be used to reduce the severity
of the standard in a reasonable and controlled way, allowing it to be applied more cost effectively to a
wider range of projects.

In either case, the decision must be made early in the development process to save development time
and costs involved in changing direction after coding has begun.

At the same time, the standard or subset must be analyzed for its ability to be checked for compliance,
and appropriate tools should be identified and deployed up front, rather than waiting until the code has
already been written and tested, when standards exceptions have already proliferated.

Developers can avoid generating extensive documentation to provide evidence that noncompliance
doesn’t affect system behavior, and will be less likely to have to substantially rework code, with the
risk of introducing defects after the code has been tested.

In our kernel analysis the risk to introduce errors within already tested code was very often
higher than the benefit gained by some rule.

By coding to a standard or subset from the beginning of a project, and using tools that automatically
verify and enforce those rules, developers can save development time and effort.

Re-engineering of a relatively big project could be a very daunting task and in some cases the
probability to introduce new errors is too high to be worth the risk3.

In the end, even though we cannot claim complete compliance with the MISRA or CERT C coding
standards, the conducted analysis given its fruits and showed to be useful for the following reasons:

• The gap to compliance is now smaller and we’ve provided the motivations behind each
violation class.

• Several – dormant – bugs were found and fixed (dormant faults).

• A precious opportunity for code audit and refactory. These opportunities (especially in
professional contexts) are very rare unless there is a valid motivation behind them.

• An opportunity to learn something new about the C language subtle details and traps.

3 A solid unit tests collection could greatly reduce this risk

74

	1 Acronyms and Keywords
	2 Introduction
	2.1 Coding Standards
	2.2 The Target Project
	2.3 Analysis Scope
	2.4 Codebase Metrics

	3 MISRA C
	3.1 Introduction
	3.2 Static Analysis

	4 MISRA C: 2012
	4.1 Brief
	4.2 Directives
	4.2.1 - Implementation
	4.2.2 - Compilation and build
	4.2.3 - Requirements traceability
	4.2.4 - Code design

	4.3 Rules
	4.3.1 - Standard C environment
	4.3.2 - Unused code
	4.3.3 - Comments
	4.3.4 - Character sets and lexical conventions
	4.3.5 - Identifiers
	4.3.6 - Types
	4.3.7 - Literals and constants
	4.3.8 - Declarations and definitions
	4.3.9 - Initialization
	4.3.10 - The essential type model
	4.3.11 - Pointer type conversions
	4.3.12 - Expressions
	4.3.13 - Side effects
	4.3.14 - Control statement expressions
	4.3.15 - Control flow
	4.3.16 - Switch statements
	4.3.17 - Functions
	4.3.18 - Pointers and arrays
	4.3.19 - Overlapping storage
	4.3.20 - Preprocessing directives
	4.3.21 - Standard libraries
	4.3.22 - Resources

	4.4 Conformance Matrix
	4.4.1 - Recap

	5 MISRA C: 2004
	5.1 Brief
	5.2 Rules
	5.2.1 - Identifiers
	5.2.2 - Types
	5.2.3 - Declarations and definitions
	5.2.4 - Arithmetic type conversions
	5.2.5 - Control flow
	5.2.6 - Functions
	5.2.7 - Preprocessing directives
	5.2.8 - Standard libraries

	5.3 Conformance Matrix
	5.3.1 - Recap

	6 SEI CERT C
	6.1.1 - Brief
	6.1.2 - Static Analysis
	6.1.3 - Taxonomy
	6.1.4 - Declarations and Initialization
	6.1.5 - Expressions
	6.1.6 - Integers
	6.1.7 - Arrays
	6.1.8 - Error Handling
	6.1.9 - Miscelaneous
	6.2 Conformance Matrix
	6.2.1 - Recap

	7 Final Considerations

