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Equivalence Classes

Equivalence relation. A binary relation ~ on a set S that for any a, b and c in S it is:
• Reflexive: a ~ a
• Symmetric: a ~ b then b ~ a
• Transitive: a ~ b and b ~ c then a ~ c

When S has an equivalence relation on it, then  S can be partitioned into subsets, called  equivalence
classes. Two elements are in the same equivalence class if they are equivalent.

Proposition. If two equivalence classes have any elements at all in common, then they coincide.

Proof.  Assume that  c∈S  belongs  to  both  A⊆S  and  B⊆S .  In  other  words  c∼a ∀a∈A  and
c∼b ∀b∈B .  By  the  symmetric  property  c∼a→ a∼c  and  for  the  transitive  property
a∼c ∧ c∼b → a∼b . Because the result is valid for any two arbitrary elements of A and B the two
sets coincide.

Example. One of the most popular equivalence relation is the definition of the set of rational numbers.
Two rational numbers (a,b) and (c,d) are equivalent iff ad=bc.
Reflexivity: (a,b)~(a,b) . Proof: ab = ab
Symmetry: (a,b)~(c,d) → (c,d)~(a,b). Proof: ad = bc → cb = da
Transitivity: (a,b)~(c,d) and (c,d)~(e,f)→ (a,b)~(e,f). Proof: ad=bc and cf=de → adcf=bcde → af=be.

Induction

Basic proof method for facts about natural numbers. Allows to obtain, in a finite number of steps,
proofs of statements about all the numbers in the infinite set ℕ .

Well Ordering Principle. Any nonempty set of natural numbers has a least element.

Proof. Let  L be a set of natural numbers with no last element. Let  P(n)  be the statement “Every
number in L is greater than n”. If P(n)  is true then n is not in L. By showing that P(n)  is true for all
n, we show that L is empty.
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P(1)  is true. If not, then 1 is the least element of L since all natural numbers are ≥1 . Assume that
P(k )  is true. If  P(k+1)  is false then  L contains some number ≤k+1 . Since P(k )  is true, every

number in L is >k , but then k+1 should be in L and is the least element. This is impossible because L
has no least element. Thus if  P(k )  is true then  P(k+1)  should be true. By induction  P is true for
every n∈ℕ  thus L is empty.

Induction. Let n0  be a fixed integer and let P(n)  be a statement which makes sense for every integer
n≥n0 . Then P(n)  is true for all n≥n0  if the following two statements are true:

• Base case: P(n0)  is true;
• Induction step: for all k≥n0 , if P(k )  is true then P(k+1)  is true.

Proof. Let L={x : x≥n0∧P(x)=false } . Assuming L≠∅ , then for the WOP there is a least element
m∈L , such that P(m)  is false. For the base case P(n0)  is true thus m>n0 . Since m is the minimum
of L then m−1∉L  and thus P(m−1)  is true. But then for the induction step P(m)  is true. Thus m
cannot be part of L. The contradiction indicates that L cannot have a last element, thus is empty.

The rationale behind the induction is that if the base case and the induction step are both true, then for
any n>n0 , one can prove P(n)  in n−n0  steps.

Because  WOP implies  mathematical  induction  and  mathematical  induction  implies  WOP,  the  two
statements are equivalent. To break the cyclic dependency, induction is usually proposed as an axiom
of the natural numbers (Peano axioms). 

Complete induction. Let n0  be a fixed integer and let P(n)  be a statement for which makes sense for
every integer n≥n0 . Then P(n)  is true for all n≥n0  if the following two statements are true:

• Base case: P(n0)  is true;
• Induction step: for all m>n0 , if P(k )  is true for all k with n0≤k<m , then P(m)  is true.

Complete induction allows to assume more than ordinary induction. In the attempt to prove  P(m)
with ordinary induction you are only allowed to assume P(m−1) .

Proof. Let L={x : x≥n0∧P(x)=false } . Assuming L≠∅ , then for the WOP there is a least element
m∈L .  For the base case  P(n0)  is true thus  m>n0  and also  P(k )  is true for every  k such that
n0≤k<m . But then for the induction step P(m)  is true, thus m cannot be part of L. The contradiction

indicates that L cannot have a last element, thus is empty.
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Theorem. If P(n)  can be proved by ordinary induction then it can be proved by complete induction.

Proof. If we can prove P(n)  assuming only P(n−1)  then we can prove it by assuming P(k )  for all
n0≤k<n  since it includes P(n−1) .

Theorem. If P(n)  can be proved by complete induction then it can be proved by ordinary induction.

Proof. Consider the new statement Q(n) : “ P(k )  is true for all k, n0≤k≤n ”. Note that if Q(n)  is
true, then P(n)  is true. We prove that Q(n)  is true for all n≥n0  by ordinary induction. 

Base case: Q(n0)  is equivalent to P(n0) , thus if Q(n0)  is true then P(n0)  is true.

Induction step: we need to show that if Q(n−1)  is true then Q(n)  is true. If Q(n−1)  is true then
P(k )  is true for all  k with n0≤k≤n−1 . For complete induction hypothesis then P(n)  is true. But

then P(k )  is true for all k with n0≤k≤n  and so Q(n)  is true. Thus, by ordinary induction, Q(n)  is
true for all n≥n0  and consequently P(n)  is true for all n≥n0 .

Corollary. Ordinary and complete induction are equivalent.

Recursive functions
The induction principle can be used to define a function with domain in ℕ .
If we can define f (n0)  with n0∈ℕ  and given the values of  f (k ) ,  n0≤k<n , we can define f (n) .
Then we can define the function f (n)  for each natural number n≥n0 .

In other words, for n∈ℕ  we can define f (n)  respect to the values of f (k )  with n0≤k<n .

Binomial Theorem

Pascal triangle

Lets define c(n ,r) as the function defining the element of the triangle that belongs to the row n and the
column r, with both indices starting from 0.

The function c is a piecewise function defined as follows:
c(0,0)=c(n, 0)=c(n ,n)=1
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c(n ,r)=c(n−1 , r−1)+c (n−1 ,r)  for 0<r<n

The formula can be thought as a way of composing a triangle-like structure with every element within
the external border evaluating to 1 and each internal one composed by adding the elements in above
row on the left and on the right:

               c(0,0)                                           1
          c(1,0) c(1,1)                                   1   1
     c(2,0) c(2,1) c(2,2)                          1    2   1 
c(3,0) c(3,1) c(3,2) c(3,3)                   1   3   3   1

The entries c (n , r )  have a combinatorial interpretation.

Proposition. Let S be a set with n elements. Then c(n ,r)  is the number of subsets of S with r elements.
In other words, the number of combinations of r elements that you can get from a set with n elements.

Proof. If r=0 or r=n , then there is only one way to compose the combination.
Let’s prove the general case by induction on n.
Base case: Let S be the set with 1 element. Then the statement is true both when r=0  and when r=1 ,
since there is only one subset of S with 0 elements and 1 subset of S with 1 elements.
Inductive step. Assume  n>1 ,  1≤r≤n−1  and that the preposition is true for  n-1. Let  y be a fixed
element of S. Let S0  be the set of all elements of S except y. S0  is then a set with n-1 elements. Divide
the collection of all r-element subsets of S into two piles, one consisting of those containing y and the
others not containing y. The first pile consists of exactly those subsets of S obtained by taking an (r-1)-
elements subset of S0  and adjoining y. By induction applied on S0  there are exactly c (n−1 ,r−1)  of
these.  The second pile consists  exactly of the  r-element  subsets of  S0  of  which there are exactly
c (n−1 ,r ) . Thus the number of r-element subsets of S is c (n , r )=c (n−1 ,r−1)+c (n−1 , r ) .

Lemma. c (n , r )= n!
r! (n−r )!

Proof. Induction on n. The base case with n=0  is trivially true.
Given n>0  assume the proposition for n-1 and for all r with 0≤r≤n−1

Now, c (n ,0)= n !
0 !n !=1  c (n , n)= n!

n !(n−n)!
=1
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For 0<r<n we have,

c (n , r )=c (n−1 ,r−1)+c (n−1 , r )= (n−1)!
(r−1)!(n−r )!

+
(n−1) !

r ! (n−1−r )!
=

=
(n−1)!

(r−1)!(n−r−1)!
⋅( 1

n−r +
1
r )= (n−1)!

(r−1)!(n−r−1)!
⋅ n
(n−r )r

= n!
r !(n−r )!

Binomial coefficient notation: c(n ,r)=(nr )
Binomial Theorem. For every integer n≥1

(x+ y)n = (n0) xn+...+(nr )xn−r yr+...+(nn) yn = ∑
r=0 : n

xn−r yr

Proof. By induction on n.

For n=1 the theorem is trivially proved (x+ y)=(10) x+(11) y

Assume n>1 and the theorem true for n-1, then
(x+ y)n=(x+ y )(x+ y )n−1=x (x+ y)n−1+ y (x+ y )n−1

Using the inductive hypothesis, we get

(x+ y)n = (n−1
0 ) xn+(n−1

1 ) xn−1 y+...+(n−1
n−1)xy n−1+

+(n−1
0 )xn−1 y+...+(n−1

n−2) xyn−1+(n−1
n−1) yn

Thus the coefficient of xn−r yr  for 0<r<n−1  is

  (n−1
r )+(n−1

r−1)=(nr )
Since (n−1

0 )=(n−1
n−1)=(n0)=(nn)=1  we finally have the Binomial Theorem.
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Integer representation

Theorem. Let  b be an integer greater than 1. If  n is an arbitrary positive integer, it can be  uniquely
expressed in the form n = rk bk+...+r1 b+r0  where k is a non negative integer and r0 …rk  are non
negative integers less than b and rk≠0 . The representation is called the base b expansion of n.

Proof. Suppose all numbers  <n  can be written in base  b.  To write  n in base  b, first divide (using
division theorem) n by b to get n=bq+r0  for unique numbers q and r0  with 0≤r0<n . By induction

the  quotient  q may  be  written  as  q=rk bk−1+…+r2b+r1  for  unique  integers  rk …r1 .  Then,
n=bq+r0=b(rk bk−1+…+r2 b+r1)+r0=rk bk+...+r1 b+r0 .

Base conversion. To get n in base b, first divide n by b, then successively divide the quotients by b. 
n=bq0+r0

q0=bq1+r1

q1=bq2+r2

⋮
qn−2=bqn−1+rn−1

qn−1=b 0+rn

The process stops when a quotient with value 0 is reached. The digits are the remainders: n=(rn ... r0)b .

The conversion of a number to base 2 can be set up as a special case of Russian Paesant Arithmetic.

Given a number a the number of words to represent it in base b are ⌊ logb a⌋+1 .

E.g. a=97 and b=5. ⌊ log5 97⌋+1=2+1=3  → 97=3⋅52+4⋅51+2⋅50=(342)5

Arithmetic

Let  a and  b be two integers  represented as  a=(an …a0)w  and  b=(bn …b0)w  for  a  given base  w.
We will measure the algorithms complexity in terms of n.

Addition

To add  a and  b we first  add the rightmost  words.  This gives:  a0+b0=c0⋅w+s0 ,  where  s0  is  the
rightmost word of the result and c0  is the carry, which is 0 or 1.
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Next we add the next pair of words and the carry:  a1+b1+c0=c1⋅w+s1 , where  s1  is the next word
from right of (a+b)w .

The procedure continue while we add an , bn  and cn−1  to obtain cn⋅w+sn . This procedure produces
(sn+1… s0)w  which could be, if cn=sn+1≠0 , one word greater than the addends. 

Complexity. The algorithm cycles n+1 times. For each iteration there is a fixed number of additions of
3 words. The complexity is thus O(n).

Subtraction

The subtraction works similarly to the addition. Starting from the right-side we subtract the second
word from the first. Every time recording if there was a borrow. A borrow will be eventually subtracted
from the next iteration result.

Multiplication

A naive approach to multiply a and b could be to add the first number to the result a number of times
equal to b. This algorithm complexity is O [(⌊ logw a⌋+1)⋅b] .

A better approach, uses the distributive law and the binary expansion of b.  
a⋅b=a⋅(b0 20+b1 21+ ...bn2n)=ab020+a b1 21+... abn2n

Where abi=a  if bi=1  and a bi=0  if bi=0 .

Each time we multiply a term by 2, we shift it’s binary representation one place to the left and add a
zero to  the tail  of  the expansion.  Consequently, a bi 2

i is  efficiently  obtained by shifting the binary
representation of a bi  i places to the left and pad with zeros.

In every iteration we shift the first number on the left by one bit (i.e. we multiply a by 2i ) and we add
it to the result if bi≠0 .

Complexity. In the worst case the first number is added ⌊ log2b ⌋+1  times (i.e. every bi≠0 ) and each
addition costs  ≈⌊ logw a⌋+1  (we are not considering that  a is left shifted one bit per iteration). The
worst case cost is thus O [(⌊ logw a⌋+1)⋅(⌊ log2 b⌋+1)] .

Division
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The naive algorithm to divide a by b>0, subtracts b from a as many times as necessary until what is left
is less than  b. The number of times we perform the subtraction is the quotient  q, what is left is the
remainder r. If a<0, we find the magnitude using the absolute value of a as above, but in the end, since
the remainder shall be positive, if  r≠0  we set  q=−(q+1)  and r=b−r , else if  r=0  we only set
q=−q . This algorithm complexity is O [(⌊ logw a⌋+1)⋅q]

A better approach is  to  use a  technique similar to  the multiplication.  Set  q=0  and then find the
greatest i>0 such that b⋅2i<a . Add to the quotient q the value 2i  and subtract from a  the value just
added to the quotient. Repeat the process while a>d. In the end set the remainder r=a.

Complexity. Similar to the improved multiplication method.

More efficient algorithms exist for multiplication and division, for example  Comba,  Karatsuba and
Toom-Cook methods.

Exponentiation

Given a base  b and an exponent  e, a naive approach is to repeatedly multiply the base  e times. The
complexity is thus equal to the multiplication complexity times e.

A better approach is the so called “square and multiply” method. If the exponent  e is represented in
base two as e=(ek …e0)2 , the operation becomes:

be=bek 2k+… e0 20

=be k 2k

⋅...⋅be0 20

Starting from be 0 20

, for every iteration i≥1 , b is squared and, if e i≠0 it is multiplied to the result.

Complexity. The worst case performs log2 e  multiplications. The bottleneck here is that the numbers
involved in the multiplications quickly become very big. And the multiplication becomes more and
more expensive on each iteration.

Modular Exponentiation

First note that (a⋅b⋅c)m=[(a⋅b)m⋅c ]m
Thus,  given  the  previously  described  exponentiation  algorithm we  can,  after  each  multiplication,
immediately find the modulus of the current result, speeding up the computation dramatically.

10



Divisibility

Divisibility. If a and b are integers with a≠0 , we say that a divides b if there is an integer c such that
b=ac, or equivalently, if b/a is an integer. When a divides b we say that a is a factor of b. The notation
a∣b  denotes that a divides b.

Theorem. Let a, b, c be integers, where a≠0 . Then
i. if a∣b and a∣c then a∣(b+c )
ii. if a∣b then a∣bc for any integer c (the converse is also true, try with c=1).
iii. If a∣b and b∣c then a∣c

Proof.
i. b=as∧c=at →b+c=a(s+t )→ a∣(b+c)
ii. b=as→ bc=asc → a∣bc  for any integer c
iii. b=as∧c=bt →c=ast → a∣c

Corollary. If a∣b and b∣a then a=±b
Proof. b=as∧a=bt →a=ast → st=1→ s=t=±1→ a=±b

Corollary. If a∣b and c∣d then ac∣bd
Proof. b=as∧d=ct → bd=acst →ac∣bd

Corollary. If ac∣bc then a∣b
Proof. bc=act →b=at →a∣b

Attention. If a∣bc does not imply that a∣b or  a∣c . For example 4∣2⋅2 but 4∤2

Division Theorem. Let a be an arbitrary integer and b a non negative integer. Then there are unique
integers q and r, with 0≤r<b , such that a=bq+r .
Proof. (Existence) Let L be the set of non-negative integers of the form a−bq , where q is an integer.
This is nonempty since -bq can be made arbitrary big (taking q negative). By the WOP there is a least
element  r=a−bq0 . Thus  r  is non-negative and  0≤r<b . If r≥b then r−b≥0 and consequently we
can define r1=a−bq0 – b=a−b(q0+1)≥0 an element of L smaller than r. That is impossible.
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(Uniqueness). Suppose that a=bq+r and  a=bs+t . Then  r−t=b(s−q) . Without loss of generality,
assume  r≥t  so that  0≤r−t=b (s−q)≤r<b . Dividing both sides by  b we get  0≤s−q<1 . Since
s−q  is an integer, we have that s−q=0→ s=q  and consequently r−t=0→ r=t .

(Existence, induction alt.). Assuming a≥0 . Base case. if a=0 we set q=r=0 . Inductive step. If b>a
we  can  directly  set  q=0 and  r=a.  If 0<b≤a then  0≤a−b<a ,  thus  for  inductive  hypothesis
a−b=bq0+r 0  thus a=b(q0+1)+r0=bq+r . By induction the existence is confirmed for every a∈ℕ .

In the equality given by the division algorithm, b is the divisor, a is the dividend, q is the quotient and
r is the remainder. With the given definition of divisibility, b divides a if and only if r=0, in such a
case b is a factor of a.

Prime Numbers

Primes. An integer  p greater than 1 is called  prime if the only positive factors of  p are 1 and p.  A
positive integer that is greater than 1 and is not prime is called composite.

Lemma1. If p is prime and p∣a1⋯an , where each ai is an integer, then p divides ai for some i≤n .

Proof. (by induction) If n=1 then p∣a1 and the lemma is immediately verified. Assume that the lemma
is verified for k≥1 . Let’s set A=a1⋯ak . If p∣(a1⋯ak +1=A ak +1)  there can be two cases: (p , A)=1
→ p∣ak +1 or ( p , A)≠1 → p∣a1⋯ak → p∣ai for inductive hypothesis.

Theorem (Fundamental  Theorem of  Arithmetic).  Every  integer  greater  than  1  can  be  written
uniquely as a prime or as the product of two or more primes.
Proof. (Existence) By complete induction. The base step is trivial since 2 is prime. If n > 2 is prime,
then  we’ve  finished.  Otherwise,  n=ab with  1<a<n and  1<b<n.  By  hypothesis,  a=p1⋯pr  and
b=q1⋯qs  are products of primes. So n=ab=p1⋯pr q1⋯qs  that is a product of primes.

(Uniqueness) If n can be written as product of primes in two different ways n=p1⋯ps=q1⋯q t . Then,
when  we  remove  all  common  primes  from  the  two  sides  we  have pi 1⋯p iw=q j 1⋯q jv where  no
common prime occurs on both sides. By previous lemma, follows that pi 1∣q jk for some k. Because no
prime divides another prime, this is impossible.

Proposition. Every natural number n≥2 is divisible by a prime number.

1 Proof depends on proposition exposed in the Bezout’s identity paragraph: a|bc and (a,b)=1 → a|b
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Proof. Base case. P(2) is true, because 2 is prime and divides itself. Induction step. Assume P(k ) true
for all k where 2≤k<m . If m is prime then it is divisible by a prime number, itself. If m is not prime
then  m=ab , where 2≤a<m and  2≤b<m . Because 2≤a<m then for complete induction hypothesis
P(a) holds.  Since a is divisible by a prime and a divides m then m is divisible by the same prime.

Proof (alt.).  For any number a>2 , let L be the set of numbers ≥2 which divide a. Since a is a positive
divisor of itself  L is nonempty. Thus for the well ordering principle there is  b in L such that it is the
least divisor of a. If b is not prime then b=ck, thus there is c<b such that c divides b and consequently
a. But that generates a contradiction because b is the least divisor of a.

Theorem. If n is a composite integer then has a prime divisor less than or equal to √n .
(Contrapositive.  If an integer n is not divisible by any prime less than or equal to √n  then is prime)
Proof.  If  n is composite then it has at least two factors a and b, with 1<a<n and 1<b<n. If both the
factors are greater than √n  then n=ab>√n√n=n . That is impossible.

Trial-division factorization. We divide n by all primes not exceeding √n and conclude that n is prime
if it is not divisible by any of these. The procedure can be iterated to produce the prime factorization of
n. That is, if a prime factor p is found, with 1<p≤√n then we repeat the process to find a factor p1  for
n/p, with p≤p1≤√n / p . Note that n/p has no prime factors less than p, such numbers were tested by
the previous iterations.

Sieve of Eratosthenes.
The algorithm is used to find all primes not exceeding a specified positive integer.
Given the list of integers less than or equal an integer n. First the set of all primes not exceeding √n  is
found. Then for each pi the algorithm removes all its multiples from the list. All the remaining integers
are  prime.  This  follows the  fact  that,  to  be  composite,  a  number  should  have  a  prime factor  not
exceeding √n .

Theorem (Infinitude of Primes). There are infinitely many primes.
Proof. Assume there are finitely many primes P={p1, …, pn} . Let q=p1⋅⋯pn+1  then q is prime or a
product of prime. None of the primes in P divides q because if pi∣q then pi∣(q−p1⋯pn=1)  and that is
impossible. Hence there is a prime not in the set P and this is either q or a factor of q.

Corollary. Because there are infinitely many primes, given any positive integer there is always a prime
greater than this integer.
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Lucas-Lehmer Test. An efficient test for determining whether 2p – 1 is prime.

Divisibility Exponential Notation

Suppose a=p1
e1⋯pn

en and b=p1
f 1⋯pn

f n where p1 , …, pn include all primes that divide either  a or  b, and
some of the exponents e i or f i may be zero.

Proposition. With a and b as above, a divides b iff  e i≤f i  for all i=1 …n

Proof. If for all i=1 , …,n we have e i≤f i , then c i=f i – e i≥0 . Hence defining q=p1
c1⋯pn

cn we have that
b=aq. Conversely, if a divides b, then b=aq for some natural number q. Then every prime that divides
q also divides b. Write q as a product of primes, as above. Then c i≥0 and b=aq means that f i=e i+ci

for each i. Hence e i≤f i .

Notation: pe∥a is the power of p in the prime factorization of a. Thus, pe∥a  if pe divides a but  pe+1

does not.

Greatest Common Divisor

A common divisor of a and b is an integer e such that e divides a and e divides b.

A number d is the greatest common divisor (gcd) of a and b if:
i. d is a common divisor of a and b;
ii. d is multiple of every other common divisor of a and b (thus is the greatest).

We denote the gcd of a and b by (a , b) .
Proof.
Existence. Consider the set  S={ax+by > 0 : x , y∈ℤ} , since the integers a and b are not both zero,
then  S is not empty, thus for the  WOP there is a least element  d=as+bt. Let’s prove that  d=(a, b) .
Dividing a by d we have a=dq+r , 0≤r<d . Then r=a−dq=a−(as+bt)q=a(1−sq )+b(−tq ) .
Thus r is of the form ax+by as well. If r>0 then r∈S and r<d. But this is impossible since d is the least
element of S. Follows that r=0 and d∣a . In the same way we find that d∣b  and the first condition for
the gcd is met.  For the second condition, given a common divisor z then z∣a and z∣b that is a=zk and
b=zw and thus d=as+bt=zks+zwt=z (ks+wt )  and z∣d (i.e. d is the max divisor).
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Uniqueness. If d1 and d2 are both  gcd, then, by  ii  we have that d2∣d1 and  d1∣d2 . Thus  d1=d2 k2  and
d2=d1 k1 . Follows that d1=d1 k1 k2→ k1 k2=1→ k1=k2=±1 and thus that d1=±d 2 . By convention the

gcd is positive, thus is unique.

One, inefficient, way to find the gcd of two integers a and b is to first find their prime factorization,
then multiply together their common prime factors taken with the minimum exponent.

Two numbers a and b are coprime or relatively prime if their gcd is 1.

Euclid’s Algorithm

Algorithm to find the greatest common multiple of two integers a and b.

Theorem. Given two integers a and b, with a>b, if d∣a and d∣b then d∣(a−b)
Proof. d∣a → a=k1 d and d∣b → b=k2 d .

Combining the two equations we get a−b=d (k1−k2) → d∣(a−b)

We can iterate the theorem application until a−ib>0 , naturally originating to the following theorem.

Theorem.  Given two integers a and b. If  d∣a , d∣b and a=bq+r , with q and r the quotient and the
remainder of the integer division respectively, then d∣(a−bq) .
Proof. d∣a → a=k1 d and d∣b → d∣bq → bq=k2 d for every q.

Combining the two equations, a−bq = d(k1−k 2) → d∣(a−bq=r ) .

Intuitive way to understand 3|a and 3|b → 3|a-b
a = 3k ---- ---- ----   k=4

b = 3z ---  ---  ---    z=3

a-b = 3(k-z)  -    -    -      k-z=1

The algorithm
The algorithm is faithfully based on the above theorem. If d is the gcd then as it divides both a and b
then it divides their integer division remainder r.
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Given two natural numbers a and b, apply the Division Theorem successively as follows:
b=aq1+r1

a=r1q2+r2

r1=r2 q3+r3
⋮
rn−2=rn−1 qn+r n

rn−1=rn qn+1+0

When we reach the point where rn divides rn−1 with 0 remainder, then rn is the gcd of a and b. That is
d∣rn ∧ d∣0 → d=rn .

Efficiency of Euclid’s Algorithm

Let N (a , b) denote the number of steps needed to obtain the last non-zero remainder of a and b (a<b)
in  Euclid’s Algorithm  using  division.  Thus  how  quickly  the  sequence r1, r2 ,…rn of  remainders
decreases. A large quotients sequence implies a rapid decrease in the remainders and that implies a
small N (a , b) .

The worst case is given when a and b are two consecutive elements of the Fibonacci’s sequence.

Let a=Fn+1  and b=Fn , because r=Fn+1−Fn=Fn−1 , then we have that r=a-b and q=1. The pattern
repeats for all the subsequent steps until the last nonzero remainder, F2=1  is not found. Thus we have
that N (Fn, Fn+1)=n−2  (for example: F4−F3=F2=1 , then N (F3 , F4)=1 ).

Theorem (Lame’s Theorem). Let a and b be two natural numbers. Suppose that a<b and a<Fn , then
N (a , b) <N (Fn ,Fn+1)=n−2 .

Proof. Let b=aq1+r1 , a=r1 q2+r2  with r1<a and q2≥1 and assume a<Fn . By induction.

Base case. ∀b∈ℕ∖1 if 1<b and 1<F3 then N (1 , b)=0<N (F3 , F4)=1  is true.

Assuming the theorem true for all k<n. If r1<Fn−1 then by induction N (r1 , a)<N (Fn−1 , Fn)=n−3 .

If r1≥Fn−1 then Fn−1+Fn−2=Fn>a≥r1+r2≥Fn−1+r2  → r2<Fn−2 . By induction,  N (r2 , r1)<n−4 . In
either case N (a , b)=N (r1 , a)+1=N (r2 , r1)+2<n−2 .

To transform the  theorem into  a  practically  usable  form,  we  need to  know how many digits  the
Fibonacci number Fn has.

List of smallest Fibonacci numbers with a given number of digits (base 10):
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F1=1 F7=13 F12=144 F17=1597

Can be proven that every five elements in the sequence the Fibonacci number gains a digit.
Now, if F5 i+2 has i+1 decimal digits, then any number  a with  d digits satisfies a<F5d+2 that has  d+1
digits. Said that, we have the following important application.

Corollary. If a < b and a has d digits, then N (a , b)<N (F5 d+2, F5d+3)=(5 d+2)−2<5 d

Follows that on the worst possible case for  the Euclid’s algorithm is guaranteed to be less that 5d steps.

Bezout’s Identity

Theorem (Bezout’s Identity).  If d the greatest common divisor of a and b, then d=as+bt for some
integers s and t.
Proof. Assuming a and b not both zero and consider the set L={ax+by>0 } . Then, since a and b are
not both zero, the set is not empty and thus has a minimum value d=as+bt. We’ll prove that d=(a , b) .
First we prove that d∣a and d∣b . Let  a=dq+r , then  r=a−dq=a−(as+bt)q=a(1−sq )+b(−tq )  is
compatible with the L elements definition. If r>0  then r∈L but since, by division theorem, r<d  that
is impossible because  d is the least element of  L. Follows that  r=0, and thus  d divides  a. The same
procedure can be followed to prove that d divides b.
Now we prove that every common divisor of a and b also divides d (and thus is less that d). Let z be an
arbitrary  common  divisor  of  a  and b.  Then  by  setting a=zk  and b=zw,  we  have  that  
d=as+bt=zks+zwt=z (ks+wt )  and thus that z divides d (note that since z≤d  → only z=d is in L).

Proof (induction via Euclid’s algorithm). Intuitively, the gcd is first found via Euclid’s algorithm, then
starting from the bottom we replace in each iteration, the quotients and the remainders.
More formally, if a divides b then a is clearly the gcd of a and b, and a=a 1+b 0⋅ ⋅ , so the theorem is true
in that case. If a does not divide b the Euclid’s Algorithm contains at least two divisions. Suppose that it
contains n+1 divisions ( n≥1 ) so that rn is the last nonzero remainder in the algorithm. We prove the
theorem by induction on n.
If n=1, then Euclid’s Algorithm for a and b has the form

b=aq1+r1

a=r1 q2+0

Then r1=(a , b)  and r1=b ⋅1+a⋅ (−q1) , so Bezout’s identity holds.

Assume the  theorem is  true  for  n=k-1,  so  is  true  for  any two numbers  whose  Euclid’s algorithm
involves k divisions. Suppose Euclid’s algorithm for a and b involves k+1 divisions:
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b=a q1+r 1

a=r1 q2+r2

r1=r 2q3+r3⋮
rk−2=r k−1qk+rk

rk−1=r k qk+1+0

Notice that if we omit the first line, what is left is the Euclid’s algorithm for a and r1 , that it requires k
divisions. So for the induction assumption, rk is the gcd of r1 and a, with rk=a u+r1 v for some integers
u and v.
Now  b=a q1+r 1 ,  so  (b ,a)=(a , r1)=rk .  Moreover,  substituting r1=b−aq1 into  the  equation
rk=a u+r1 v  gives rk=a u+(b−aq1)v=bv+a(u−q1 v) .

Hence Bezout’s identity holds for a and b. The theorem is true by induction.

Solving  Bezout’s identity by  Euclid’s algorithm is often called the  Extended Euclidean Algorithm
(EEA). 

It is easier to do the computations by starting at the top of Euclid’s Algorithm, rather than the bottom,
and successively write the original two numbers and all the remainders as linear combinations of the
two original numbers.
The process can be done easily by setting up a matrix of three columns: remainders, coefficients of a
and coefficients of b. We call this matrix the EEA matrix.

Example: e=365 x+1876 y

e      x       y
-------------------------------
1876  0   1
365  1   0
365⋅5                5   0
51=1876-365⋅5       -5   1
51⋅7    -35   7
8=365-51⋅7     36  -7
8⋅6    216 -42
3=51-8⋅6   -221  43
3⋅2   -422  86
2=8-3⋅2    430   -93
1=3-2   -651 136

Thus we’ve finally found that 1=365(−651)+1876 (136)

Corollary. Two numbers a and b are coprime iff there are integers s and t such that 1=as+bt.
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Proof.  If (a , b)=1 then  for  the  Bezout’s identity  there  are  integers  s and  t such  that  1=as+bt.
Conversely, if  1=as+bt for some integers s and t.  If d is the gcd then it divides both a and b, then d
divides as+bt=1, so d=1 or -1. The gcd of a and b is positive thus d=1 and a and b are coprime.

Corollary. If e divides a and b then e divides (a,b).
Proof. d=(a,b) → d=ar+bs for some integers r and s. If e divides a and b then a=ef and b=eg for some
integers f and g. Then d=efr+egs = e(fr+gs). So e divides d.

Corollary. If a divides bc, and a and b are coprime, then a divides c.
Proof. 1=ar+bs for some integers r and s. Multiply both sides by c to get c=arc+bsc. Now, a obviously
divides acr. If a divides bc then it divides bsc. Thus a divides their sum c.

Proposition. For every integers a,b,m: 
i. (ab ,m)  divides (a, m)(b ,m)

ii. If a and b are coprime, then (ab ,m)=(a ,m)(b , m)

Proof. Let (a,m)=ra+sm, (b,m)=tb+vm. Then (a,m)(b,m)=ratb+ravm+smtb+smvm = abrt+mz.
Since (ab,m) divides ab and m, therefore (ab,m) divides abrt+mz=(a,m)(b,m).
For the second part notice that

(a , m)=aX+mY and (ab , m)=abU+mW
((a , m)∣a →(a , m)∣ab) and (a ,m)∣m → (a , m)∣(abU+mW ) → (a , m)∣(ab , m)

Then we can write (ab , m)=(a , m)e for some integer e.
Following the same reasoning also (b, m)∣(ab , m) . 
Since a and b are coprime also (a , m) and (b , m) are coprime. Thus, for the previous corollary, follows
that (b , m) divides  e.  Thus (ab , m)=(a ,m)(b , m)k for  some  integer  k.  Since (ab , m)  divides
(a , m)(b , m) , we must have k=1.

The previous proposition is useful for factoring large numbers.

Linear Diophantine Equations

For numbers a, b, e, Bezout’s Identity can be conveniently used to decide if there are integers solutions 
to the equations of the form ax+by=e. And to find the solution if there is one.
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Proposition. Given integers a, b, e, there are integers x and y with ax+by=e iff d=(a,b) divides e.
Proof. If ax+by=e, then the gcd divisor of a and b divides the sum of their multiples, and thus e.
If  d divides  e then  e=dk for some integer  k.  For  Bezout’s Identity we can find integers  r,s so that
d=ar+bs. Multiplying both sides by k we get e=dk=ark+bsk=ax+by.

The proof also shows how to find a solution of ax+by=e given that (a, b)∣e .
As an optimization, if we use the EEA matrix to find (a , b) we can stop the procedure as soon as we
find a remainder c that divides e.

General solution. To find the general solution of  ax+by=c we need to find an arbitrary solution of
ax+by=c then add to it the general solution of the homogeneous equation ax+by=0.

Proposition. Let d=(a , b) . The general solution of ax+by=0 is x=b
d k and y=− a

d k for any  integer

k.

Proof. Suppose  ax+by=0. Divide both sides by  d to get  a
d x=−b

d y . Since the integers a
d and b

d are

coprime, then a
d divides y and y=a

d k for some integer k. Finally a
d x=−b

d
a
d k  that gives  x=−b

d k .

Corollary.  If x0 , y0 is  a  solution  of  ax+by=c,  then  the  general  solution ax+by=c  is  of  the  form

x=x0+
b
d k  and y= y0−

a
d k .

Least Common Multiple

Given two natural numbers a and b, a number m>0 is a common multiple of a and b if m=ar=bs for
two natural numbers  r and  s.  There are infinitely many common multiples and the  least common
multiple is the smallest in this set and is usually denoted as lcm(a ,b)  or [a , b] .

Proposition. Any two numbers a and b have a least common multiple.
Proof. Since the set L of common multiples of a and b contains their product a⋅b , then L is not empty
and thus for the WOP has a least element, which is the least common multiple.
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Proposition.
i. The lcm of a and b is the product ab divided by the gcd: [a ,b]=ab/(a , b)
ii. The lcm of a and b divides every common multiple of a and b.

Proof. Assuming that d=(a , b) , we consider two separated cases: d=1 and d>1.
If d=1. Clearly ab is a common multiple of a and b, we must prove that it is the least. Suppose m>0 is a
common multiple of a and b. Then m=as for some number s>0 and b∣(m=as) . Since (a , b)=1  then
b∣s , so s=bt for some integer t>0. Thus m=as=abt. Since t>0 then m≥ab and m is a multiple of ab.
Thus ab is the lcm and ab divides any other common multiple.
If d>1. Let a=dx and b=dy , follows that ab /d=xyd=ay=bx , so ab/d is a common multiple of both
a and b. We have to show that any common multiple of  a and b is a common multiple of  ab/d (and
consequently is the least). Suppose m>0 is a common multiple of a and b. Then m is a multiple of d, so
write  m=dk for some number  k. Since (a=dx)|(m=dk) then x|k and,  in similarly,  y|k.  Now for  the
Bezout’s identity d=ar+bs then 1=xr+ys and thus (x,y)=1. By the first part of the proof then, xy divides
any multiple of  x and  y,  thus xy|k.  But then (xyd=ab/d)|(kd=m),  that is  ab/d divides any common
multiple of a and b.

Congruence

Two integers a and b are congruent modulo m, written a≡b(mod m) , if m∣(a−b)  or, equivalently, if
b=a+mk for an arbitrary integer k.
The set of integers to which the integer a is congruent modulo m is {a+mk :∀ k∈ℤ} .
The division theorem asserts that a=mq+r, for two unique integers q and r with 0≤r<m . In terms of
congruence, this last equation says that a≡r (mod m)  and r is called the least non-negative residue of
a(mod m) , often simply denoted as “a mod m”.

Proposition. Let m be a natural number. Every integer is congruent modulo m to exactly one number
in the set {0 , …, m−1 } .
Proof. For the Division Theorem a=mq+r for two unique integers q and r, such that 0≤r<m . Follows
that a−r=mq  and thus a≡r (mod m) .

Proposition.  Given m successive integers a ,…, a+(m−1) and another integer A. Then one and only
one of these integers will be congruent to A modulo m.

21



Proof.  Because  a≡r (mod m)  for  a  unique  r such  that  0≤r<m .  Then a , a+1,…,a+(m−1) are
congruent to r , r+1 ,…, r+(m−1)=r−1 . Now, because A mod m∈{0 , …, m−1} , the result follows.

Proposition. Let a and b be two integers. Suppose the remainder on dividing a by m is r and the
remainder on dividing b by m is s. Then a≡b(mod m) iff r=s.
Proof. For the Division Theorem a=mq+r and b=mt+s for some natural numbers q and t. If r=s , then
a−mq=b−mt , a−b=m(q−t) , and so a≡b(mod m) . Conversely, if a≡b(mod m) , then b=a+mk
for some k, so if a=mq+r is the result of dividing a by m, then b=a+mk=mk+mq+r=m(k+q)+r .
Since 0≤r<m , this expression for b is what is obtained from the Division Theorem when b is divided
by m. By the uniqueness of the quotient and remainder, s = r.

In other words, two numbers are congruent modulo m iff their least non-negative residues are equal.

Proposition. Congruence modulo m is an equivalence relation.
Proof. 

i. Reflexive. If a≡a(mod m) , then a=a+mk, and that is trivially true for m=0.
ii. Symmetric. If a≡b(mod m) , then a=b+mk and b=a+m(-k). Thus b≡a(mod m) .
iii. Transitive. If  a≡b(mod m)  and b≡c (mod m) then a=b+sm and b=c+tm. Substituting we get

a=c+(t+s)m  so a≡c (mod m) .

Proposition. For all integers a, b, c, d and m
i. if a≡b(mod m) then ka≡kb (mod m)
ii. if a≡b(mod m) and c≡d(mod m) then:

a) a+c≡b+d (mod m)
b) ac≡bd (mod m)

Proof.
i. a=b+ms → ka=kb+kms→ka≡kb (mod m)      (… and also ka≡kb (mod km) )
ii. a) a=b+ms∧c=d+mt→ a+c=(b+d )+m(s+ t)→ a+c≡b+d(mod m)

b) a=b+ms∧c=d+mt →ac=bd+mZ → ac≡bd(mod m)

Similar properties were found in the “divides” relation, with the exception of ii.a
If a∣b then ak∣bk
If a∣b and c∣d then ac∣bd , but that doesn’t imply (a+c)∣(b+d)
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The  cancellation property, i.e.  the  converse  of  proposition  i,  does  not  necessarily  hold.  Thus,  if
ac≡bc (mod m) , then the congruence a≡b(mod m) does not necessarily follow.
Example: 2⋅3≡2⋅1(mod 4) but 3≡1(mod 4) is not true.

Proposition. If ac≡bc (mod m) then a≡b(mod m
(c ,m)

)

Proof. Given d=(c , m)  and ac≡bc (mod m) → c (a−b)=mk → c
d (a−b)=m

d k  .

Because ( c
d

, m
d
)=1  then m

d ∣a−b and thus a≡b(mod m
(c ,m)

)

Corollary. If ac≡bc (mod mc)  then a≡b(mod m)

Proof. Immediately follows the previous proposition.

Corollary. The cancellation property holds iff (c , m)=1
Proof.  If  the  cancellation  property  holds  then ac≡bc (mod m) → a≡b(mod m) and,  because  of  the
previous proposition, (c , m) should be 1. Conversely, if (c , m)=1 the result follows immediately from
the previous proposition.

Proposition. If a≡b(mod m) and d∣m then a≡b(mod d)
Proof. m∣(a−b) and d∣m → d∣(a−b)  

Proposition. For all natural numbers e and integers a, b: if a≡b(mod m) then ae≡be (mod m)
Proof. The result is a simple induction argument based on a≡b(mod m) → aa≡bb(mod m)

This last proposition can be used to simplify the exponential computations modulo m.
Example.  If  e=st then  to  compute ae≡be (mod m) we  can  first  compute  as mod m=r .  Now,  since
as≡r (mod m)  then ae=(a s)t≡rt (mod m) .
For convenience, keep the absolute value of the modulus operation result k as close to zero as possible.

Proposition. If a≡b(mod r) and a≡b(mod s) then a≡b mod([r , s ])
Proof. The lcm [r , s] divides every common multiple of r and s. Since r∣a−b and s∣a−b then a−b  is a
multiple of both r and s and thus [r , s]∣(a−b).

Congruence relations can help explain some of the well known divisibility tricks by 3, 9, 2, 5, 11, 7, 13.

23



For example, given an arbitrary integer a, we rewrite the number in base 10 expanded form
a=an 10n+…+a0100

Since 10≡1(mod 9) then 10e≡1(mod 9) for any number  e.  Follows that  a≡(an+…+a0)(mod 9)  and
thus that 9∣a iff (an+…+a0)≡0 (mod 9) .

Also since 10≡1(mod 9) and 3∣9 then 10≡1(mod 3) and thus 3∣a iff  (an+…+a0)≡0 (mod 3) .

Divisibility by 2 is trivially proved by noting that  10≡0(mod 2) . Thus  2∣a  iff  2∣a0 . An identical
argument is used to prove divisibility by 5.
Divisibility by 7 is proved by noting that 1001≡0 (mod 7) , and thus 1000≡−1(mod 7) . By rewriting
a in  base  1000  expanded  form  a=an 1000n+…+a010000  we  have  that  a  is  equivalent  to
a0−a1+a2 – a3+…+(−1)nan , thus 7∣a iff such a sum is congruent to 0 modulo 7. An identical argument
is used to prove divisibility by 11 and 13. 

Linear congruences

We want to solve: ax≡b (mod m) .
To solve the problem, we need to find two integers x and y so that b=ax+my .

Proposition. The linear congruence ax≡b (mod m)  has a solution iff (a ,m)∣b
Proof. Setting d=(a , b) . If d does not divide b then there are no integers x and y with ax+my=b, and
so the linear congruence has no solution. If  d divides  b then b=dk and we can solve the congruence
using the Bezout identity: d=as+mt → b=ask+mtk → b=ax+by with x=sk and y=tk.

To systematically  arrive  to  the  solution,  we can  set  up  an  EEA matrix  to  find d=(a , m) and then
multiply it by b/d to get the solution. We can simplify the EEA algorithm by stopping as soon as we
find a divisor of  b (not necessary to arrive to (a,m)) and by computing only the x coefficients of the
linear diophantine equation.

Proposition. If (a , m)=1 then ax≡1(mod m) has a unique solution modulo m.
Proof. (Existence) The congruence ax≡1(mod m) is equivalent to the equation ax+my=1. If (a ,m)=1
, then by Bezout’s Identity there are integers s, t such that 1=as+mt, and so x=s and y=t is a solution of
the  congruence.  (Uniqueness)  If  also aw≡1(mod m) then a(x−w)≡0 (mod m) and  so  m∣a(x−w) .
Since (a , m)=1 , m∣(x−w) and x≡w (mod m) .
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Multiplicative Inverse. The solution x of ax≡1(mod m) is the inverse of a modulo m.

Corollary. If (a,m)=1 then ax≡b (mod m) has a solution for all b.
Proof. Find the inverse a−1 of a modulo m and set x=a−1b

Proposition.  Given ac≡bc (mod m) ,  the cancellation property holds iff there exists the inverse of c
modulo m.
Proof. If there exists c−1  then acc−1≡bcc−1(mod m)  and a≡b(mod m) . If the cancellation property
holds then (c , m)=1 → 1=cs+mt  → 1≡cs (mod m) and s=c−1 .

General  solution.  Just  like  with  linear  diophantine  equations,  to  find  the  general  solution  of
ax≡b (mod m) ,  we  need  to  find  an  arbitrary  solution,  then  add  to  it  the  general  solution  of  the
homogeneous congruence ax≡0 (mod m) .

Then  x is  a  solution  of  the  homogeneous  congruence  iff m∣ax iff  m
d ∣

a
d x where  d=(a ,m) .  Since

(m
d , a

d )=1  the last statement is equivalent to m
d ∣x , hence x=m

d k for some integer(s) k.

Thus, modulo m, we have d=(a , m) different solutions to the homogeneous congruence, namely:

 x=m
d k for k=0, …d−1 .
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Congruence classes

The idea is to use congruence modulo m to split the set of integers into a finite collection of disjoint
subsets on which we can do arithmetic. We’ve already proved that the congruence modulo  m is an
equivalence relation. When a set S has an equivalence relation on it, then the relation partitions the
set S into subsets, called equivalence classes, defined by the property that two elements are in the same
equivalence class if they are equivalent.
The equivalence class of the integer a is called the congruence class of a modulo m, written [a]m .

[a]m={a+mk : ∀ k∈ℤ}

The set of all the congruence classes modulo m is denoted as ℤ/mℤ .
The set ℤ/mℤ  is composed by m congruence classes each one containing infinite elements.

ℤ/mℤ={[0 ]m ,[1]m ,[2]m, ... ,[m−1]m }

Proposition. For a ,b∈ℤ , a≡b(mod m) iff  [a]m=[b]m .

Proof. If  [a]m=[b]m ,  since  a∈[a ]m ,  then  a∈[b ]m ,  so a=b+mk for  some  k or,  equivalently,
a≡b(mod m) .  Conversely, if  a≡b(mod m) ,  given an arbitrary integer  d∈[a]m  then by definition
d≡a(mod m)  and  (by  transitivity)  d≡b (mod m) ,  thus  d∈[b]m .  Since  d∈[a]m  implies  d∈[b]m
then [a]m⊆[b]m . A similar argument shows that [b]m⊆[a]m . Thus we have [a]m=[b]m .

Corollary. Suppose [a]m and [b]m are two congruence classes and c∈ℤ is in both [a]m and [b]m , then
[a]m=[b]m .

Proof.  If c∈[a]m then  c≡a(mod m) ,  so  by  the  previous  proposition  [c]m=[a]m .  If  c∈[b]m ,  then
c≡b (mod m) , so [c]m=[b ]m . Hence [a]m=[b]m .

An element of a congruence class modulo m is called a representative of that class. We may label a
congruence  class  by  any  representative.  Is  often  convenient  to  label  the  class  with  the  least  non
negative element of the class, but this is not always the case.

Arithmetic on ℤ/mℤ
[a]m+[b ]m=[a+b ]m
[a]m⋅[b]m=[a⋅b]m
−[a ]m=[−a]m
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For example, this means that the sum a representative of [a]m and a representative of  [b]m  gives a
representative of [a+b]m (not always the least non negative one).

Example. [7 ]10+[8]10=[15]10=[5]10

Theorem. Addition and multiplication in ℤ/mℤ are well defined.
Proof. We must show that if [a]m=[a ' ]m and [b]m=[b ' ]m then

[a+b]m=[a'+b ' ]m

[a⋅b ]m=[a '⋅b ' ]m
[−a]m=[−a ' ]m

To easily prove the statements, we translate them into congruence notation, that we know they are true.
If a≡a '(mod m) and b≡b ' (mod m) then

a+b≡a'+b '(mod m)

a⋅b≡a '⋅b ' (mod m)

−a≡−a ' (mod m)

The congruence classes [0]m and [1]m are special, in that
[0]m+[b ]m=[b]m ( [0]m  is the addition neutral element)
[1]m⋅[b ]m=[b]m ( [1]m  is the product neutral element)
[0]m⋅[b]m=[0]m

Given integers a, b and a natural number m>1, all of these notations are equivalent:
a=b+mk
m∣(b−a)
a≡b(mod b)
[a]m=[b]m

The set of congruence classes modulo m is a set on which we can do arithmetic in a natural manner.

Complete sets of representatives

Definition.  A  complete set  of representatives  for ℤ/mℤ is  a  set  of  m integers {r1 , …, rm } so that
every integer in ℤ is congruent modulo m to exactly one of the numbers in the set. Then the set of all
the congruence classes modulo m is
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ℤ/mℤ={[r1]m , ... ,[rm]m }

We’ve already proved that given an arbitrary integer this is congruent to one and only one congruence
class in the set. Every set of m consecutive integers is a complete set of representatives. 

Proposition. Every set of m consecutive integers is a complete set of representatives for ℤ/mℤ .
Proof. Given m successive integers defined as ai=a1+k  for 0≤k<m . If they are not a complete set of
representatives then there are two elements ai and a j such that [ai ]=[a1+i ]=[a1+ j ]=[a j ] for  i≠ j  and
0≤i , j<m .  From the previous equation follows that [i ]=[ j ] , but we know that should be [i ]≠[ j ] .
The contradiction suggests that the m consecutive elements are a complete set of representatives.

Proposition.  If {a1, …,am } is  a  complete  set  of  representatives  modulo  m,  then  for  any  integer  b,
{a1+b ,…,am+b }  is a complete set of representatives.

Proof. If not, then [ai+b]=[a j+b] and then [ai]=[a j] , contradicting the hypothesis.

Proposition.  If {a1, …, am } is  a  complete  set  of  representatives  modulo  m,  then {b a1 , …, bam} is  a
complete set of representatives modulo m iff gcd (b , m)=1 .
Proof.  If gcd (b ,m)=1 and [ai b]=[a jb ] then there exist the inverse of b modulo m such that [ai]=[a j]
, contradicting the hypothesis.

Primitive  Root  Theorem.  If p  is  a  prime  number  then  there  exists  some  integer  r  so  that
{0 , r , r2 ,r3, … ,r p−1 }  is a complete set of representatives for ℤ/ pℤ .

In other words, for every representative  a of  ℤ/ pℤ  there is an integer  k such that  rk≡a(mod p) .
Such k is called the index or discrete logarithm of a to the base r modulo p  ( logr a=k ).

An integer r satisfying the PRT is called a primitive root modulo p.

When we represent the non-zero congruence classes modulo p by the powers of a primitive root r, then
multiplication of congruence classes turns into addition of exponents modulo p. That is, if  [r x ]p=[a]p

and [r y ]p=[b]p  then [a]p[b] p=[r x ]p[r
y ]p=[rx + y ]p

Proposition. Given a set R={r1 ,…, rm } of m integers, the following conditions are equivalent:

i. For every i, j with 1≤i< j≤m , ri is not congruent r j modulo m

ii. Every integer is congruent modulo m to some ri∈R

28



A complete set of representatives mod m is a set of integers R satisfying either i or ii.
Proof.  Given  a  set R={r1 ,…, rm } of  m integers,  the  map r →[r ]m defines  a  function  f from  R to
ℤ/mℤ . Then  i says that  f is one-to-one and  ii says that  f is onto2. Let f (R)={f (r ): r∈R } be the
image of the function f. Now if |R|=m , |f (R)| and |ℤ/mℤ|=m denote the cardinalities of the sets R,
f (R)  and  ℤ/mℤ  respectively,  then  m=|R|≥|f (R)|≤|ℤ/mℤm|=m .  Also  f is  one-to-one  if
|R|=|f (R)| , and  f is onto if  |f (R)|=|ℤ/mℤ| . Since |R|=m=|ℤ/mℤ| , it follows that |R|=|f (R)| iff
|f (R)|=|ℤ/mℤ| , that is, f is one-to-one iff f is onto. So i and ii are equivalent.

Units

Given a number a if there is a number b so that ab=ba=1 then we call a a unit and b the inverse of a.

Proposition. If the inverse of a number exists, then is unique.
Proof.  If  b and  c are both inverses of  a,  then ab=ac=1.  By multiplying both sides by  b we have
b(ab)=b(ac )→(ba)b=(ba)c →b=c .

In ℤ only 1 and −1 have multiplicative inverse, themselves respectively.
In ℚ every number, except 0, has a multiplicative inverse.

Proposition. [1]m  is the only multiplicative identity in ℤ/mℤ .

Proof. If we assume that [e ]m is a another multiplicative identity, then given an arbitrary congruence
class [a ]m , [e]m⋅[a ]m=[a ]m .  In particular [e ]m⋅[1]m=[1]m . But since [1]m is a multiplicative identity as
well, [e ]m⋅[1]m=[e ]m . Thus [1]m=[e]m .

The trivial, and inefficient, way to find units in ℤ/mℤ  is to write the whole multiplication table. 

Theorem. In ℤ/mℤ [a ]m is a unit iff a and m are coprime.

Proof.  If (a, m)=1 then by  Bezout’s identity  there are  integers  r and  s such that  1=ar+ms .  Then
[ar+ms]m=[1 ]m . But [ar+ms ]m=[ar ]m=[a]m [ r]m=[1]m so [r ]m is the inverse of [a ]m in ℤ/mℤ .

Conversely if [a ]m is a unit then there is [r ]m such that [a ]m [r ]m=[1 ]m . Passing to congruence notation
this is equivalent to ar≡1(mod m) , so there is an integer s such that ar+ms=1 , which implies that
(a, m)=1 .

2 If both the domain and codomain have the same number of elements then a function is one-to-one iff is onto.
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Corollary. The number of units in ℤ/mℤ  is equal to the number of integers a with 1≤a≤m that are
coprime to m.

Proposition. If [a] and [b] are units then [ab ] is a unit.
Proof. There are [r ] and [s] such that [a ][r ]=[1] and [b ][s]=[1] then [ab ][rs ]=[1] .

So the set of units Um is then closed under the multiplication operation.

Note that Um can be not closed under the addition operation. That is, the addition of two units can
produce a result that is not a unit.

Proposition. If r is a primitive root modulo p then [r ] is a unit. 

Proof. Since there must be some power  k,  with 0<k<p, such that [1]=[rk ] then [r ] is a unit and its
inverse is [r k−1 ] . Also note that any power s of the primitive root is a unit as well: since [1]=[rk ] , then
if s≤k the inverse is [r k−s ] else the inverse is [r p−s+k ] .

Note that if k=1,then [r 1]=[1]→[r ][r0]=[r ][1]=[1] and follows that [r ] is its own inverse.

Follows that the converse of the Primitive Root theorem holds.

Theorem (PRT converse). If in ℤ/ pℤ  there is a primitive root r then p is a prime number.
Proof. Every congruence class, other that [0 ] is of the form [r k] for some k, hence is a unit of ℤ/ pℤ .
Because a unit should be coprime to p and every rk is congruent to some number n, with 0≤n<p , then
every number n<p is coprime to p. Follows that p should be prime.

Euler’s totient

Euler’s phi function (totient). For each m≥1 , ϕ(m) denotes the number of integers a with  1≤a≤m
that are coprime to m. The totient ϕ(m) is thus equal to the number of units in ℤ/mℤ .

Proposition. Given two integers m and n. If gcd (m, n)=1 , then ϕ(m n)=ϕ(m)ϕ(n) .
Proof. Build a matrix of the numbers 1 to mn with m rows and n columns.

1 1+m 1+2m ... 1+(j-1)m ... 1+(n-1)m
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2 2+m 2+2m ... 2+(j-1)m ... 2+(n-1)m

3 3+m 3+2m ... 3+(j-1)m ... 3+(n-1)m
⋮ ⋮ ⋮ ⋮

i i+m i+2m ... i+(j-1)m ... i+(n-1)m
⋮ ⋮ ⋮ ⋮

m m+m m+2m ... m+(j-1)m ... m+(n-1)m

The numbers in the i-th row are of the form i+km as k runs from 0 to n-1. Let d=gcd (i , m) .
If d>1 then no number in the i-th row of the table is relatively prime to mn, since if d∣i and d∣m  then
d∣(i+km) for all k. Thus (mn ,i+km) is at least d>1. So to count the residues relatively prime to mn we
need to look at the rows indexed by values of  i such that  (i ,m)=1 , and there are exactly  ϕ(m)  of
them.
If  d=1 then every entry in the  i-th row is relatively prime to m, since (i+km ,m)=1  by the Euclid’s
algorithm. Because {0,…,(n−1)} is a complete set of representatives modulo n, then follows that the
entries in the i-th row form a complete set of representatives modulo n (mul by m, with (n,m)=1, and
add i)3. Thus exactly ϕ(n)  of them will be relatively prime to n, and thus relatively prime to mn. 

Proposition. Given a prime number p, and a natural number n. 

ϕ( pn)=pn−pn−1=pn−1(p−1)=pn(1−1/ p)

Proof. Create a list of the numbers from 1 to  pn  and count how many numbers in the list are not
relatively prime to pn . Because p is prime we indeed are counting the multiples of p that are less than
pn .  There  are pn−1 of  such  multiples  and  they  are:  p , 2 p , 3 p , …, pn−1 p .  Thus  among  the  pn

numbers there are pn – pn−1 numbers relatively prime to pn .

Theorem ϕ(m)=m⋅∏
pi

(1− 1
pi
) , pi∣m .

Proof.  The  fundamental  theorem of  arithmetic  states  that  if  n>1  there  is  a  unique  expression  for
n=p1

k1⋅p2
k2⋅…⋅pr

k r  where p1< p2<…< pr are prime numbers and each k i>0 .

Repeatedly using the multiplicative property of ϕ and the formula for ϕ( pk ) gives

ϕ(m)=ϕ( p1
k1⋅…⋅pr

k r)=ϕ(p1
k1)⋅…⋅ϕ( pr

k r )=p1
k1(1−1 / p1)⋅...⋅pr

k r (1−1/ pr)=

 =p1
k1⋅...⋅pr

k r⋅(1−1/ p1)⋅...⋅(1−1 / pr)=m⋅∏
pi

(1− 1
p i
)

3 Refer to “complete set of representatives” propositions.
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Equations

The main application of inverses is equation solving.
If we can find the inverse [b ]m of [a ]m in ℤ/mℤ then we can solve [a ]m X=[c]m for any  c  simply by
setting X=[b ]m [c ]m=[bc ]m .

In ℤ/mℤ equations can have a solution even when the X coefficient [a]m is not a unit.

Example.  [6 ]16 X=[14 ]16 .  Even  if [6 ]16 is  not  a  unit,  because [14 ]16=[30 ]16 the  equation
[6 ]16 X=[30 ]16  has as a solution X=[5]16 .

Proposition.  Suppose X=x0 is  a  solution  for  aX=b .  Let  N  be  the  set  of  all  solutions  to  the
homogeneous equation aX=0 . Then every solution to aX=b has the form X=x0+t for t∈N .

Proof. If a x0=b and at=0 , then a(x0+t )=b . Conversely, to prove that all the solutions have such a
form, let x1 be another solution. Then  a(x1−x0)=b−b=0 ,  so t=x1 – x0 is in  N and  x1=x0+ t ,  as
claimed.

Proposition.  If  d=(a , m) ,  then  the  general  solution  in ℤ/mℤ of [a]X=0 is X=[ m
d k ] for

k=0, …, d−1 .

Proof. ax≡0 (mod m) iff  ax=my .  Since  d=(a , m)  then  a
d x=m

d y .  Now we have  ( a
d , m

d )=1 ,  so

should  be  m
d ∣x ,  and  thus  x=m

d k  for  some  integer  k.  So  we’ve  found  that X=[ m
d k ] for

k=0, …, d−1 . Note that if k=d then x=m
d⋅d=m , and [m]=[0]  (i.e. the solutions cyclically restart

from the first class every d elements).

Unique inverse. We’ve already proven that if the inverse exists then is unique via a simple argument.
The uniqueness of inverse can be also proven using the previous proposition.
Proof.  If [a] is  a  unit  in ℤ/mℤ then  there  exists  an  X such  that  [a]X=[1]  and  this  implies  that

d=(a, m)=1 .  Since [a]X=[0] for X=[ m
d k ] with  k=0, …,d−1 ,  in  this  case  the  only  solution  is

X=[0] . Thus the equation [a]X=[1]  has a unique solution, i.e. the unique unit inverse.
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Algebraic structures

A group is a set G together with a binary operation ∗ (called the group law of G) that combines any 
two elements a and b to form another element, denoted a∗b .
Group axioms:

• Closure: for all a, b in G, a∗b is also in G
• Associativity: for all a, b, c in G, (a∗b)∗c=a∗(b∗c)
• Identity element: there exists an element e in G, such that a∗e=e∗a=a
• Inverse element: for each a in G, there exist an element a−1 such that a∗a−1=a−1∗a=e
• Commutativity:  for all a, b in G, (a∗b)=(b∗a)

Depending on which axioms are satisfied, different group-like structures are defined:
• Groupoid (or magma): only closure is satisfied.
• Semigroup: an associative groupid.
• Monoid: a semigroup with identity.
• Group: a monoid with inverse.
• Abelian group: a commutative group.

Example. With the operation +, the set ℤ and ℚ are Abelian groups.
With the operation ⋅ , the set ℚ is an Abelian group while the set ℤ not because only 1 and -1 elements
have the multiplicative inverse..

Let F be a set along with with two operators: the product ⋅  and the addition +. If the set F is a group
with respect to the two operators, with the only exception that 0 doesn’t have a multiplicative inverse,
then F is called a field. The addition and product identities are defined as 0 and 1, respectively.
A field should have the non-triviality property, i.e. F should have at least two elements.
For example, the set ℚ of rational numbers is a field.
The set ℤ of integers satisfies all properties required by a field except that not every element has a
multiplicative inverse. If in a set R the multiplicative inverse may not be preset for some elements then
the set R is called a commutative ring.
Note that a field posses the properties of a commutative ring, thus is also a commutative ring.
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For example, the sets ℤ and ℚ are both commutative rings.

If R is a ring and S is a subset of R that is closed under addition, multiplication, taking negatives, and
has 0 and 1, then  S is also a ring. We call  S a  subring of  R. Obviously, because it is a subset, the
properties that hold in R hold in S.
Example. ℤ can be thought as a subset of ℚ by identifying the integer a with the rational number a/1.
Then ℤ is a subring of ℚ .
But ℤ/mℤ is not a subring of ℤ since ℤ/mℤ is not a subset of ℤ . Rather, it is a set of subsets of ℤ ,
the congruence classes of ℤ modulo m.

Theorem. ℤ/ℤm is a commutative ring with identity for every m≥2 .

Proof. We’ve defined  [a ]+[b ]=[a+b ] ,  −[a ]=[−a ] ,  [a ]⋅[b ]=[a⋅b ] . Set  1=[1]  and  0=[0 ] . With
these definitions is easy to show that since ℤ is a commutative ring with identity, then so is ℤ/ℤm .

For example. The commutative law for addition  [a ]+[b ]=[a+b ]=[b+a]=[b ]+[a ] ;  the identity for
multiplication [a ]⋅[1]=[a⋅1]=[a ] . The other properties are equally easy to verify.

Definition. An element a of a commutative ring R is called a unit of R if there exists some b in R so that
a⋅b=b⋅a=1 .

Example. In ℤ only 1 and -1 are units. In ℚ every nonzero number is a unit.

Units are closed under multiplication. That is if a and b are units of R, and a−1 and b−1 their inverses,
then ab has an inverse, namely b−1 a−1 . Thus the units of a ring form a group U R under multiplication.
Note that UR is not a field since 0∉UR .

If F is a group then the group of units U F should contains all the F’s elements except the 0.

Proposition. A group has only one identity element.
Proof. If e0 and e1 are both identity elements. Then e0∗e1 should be equal to both e0 and  e1 . Follows
that e0=e1 .

Proposition. In a group, an element has only one inverse.
Proof. Given an element a in the group. If b and c are both inverses for a, then a∗b=e and a∗c=e .
Then a∗b=a∗c and multiplying both sides by  b we have  b∗(a∗b)=b∗(a∗c)=(b∗a)∗b=(b∗a)∗c
for commutativity of the inverse b∗a=e then b=c .
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This last proposition implies that in a ring, an element a has only one negative and, eventually, only
one multiplicative inverse.

Zero divisors

Definition. A non-zero element  a of a ring  R for which there is some  non-zero b such that  ab=0 is
called a zero divisor.

NZD. A ring R for which for all a, b in R if ab=0 then a=0 or b=0 is said to have no zero divisors.
Example. ℤ has no zero divisor.
Example. In ℤ/6 ℤ , [3 ][4 ]=[12]=[0 ] , so both [3 ] and [4 ] are zero divisors.
Given [a]m≠[0]m , any non-zero solution of [a ]m X=[0]m is a complementary zero divisor of [a ]m .

Example. in ℤ/12ℤ , [6 ] has complementary zero divisors [2] , [4 ] , [6 ],[8 ],[10] .

Proposition (Cancellation). Non-zero divisors can be canceled. That is, let R be a commutative ring
and suppose a≠0 in R is a non-zero divisor. Then if b, c are in R and ab=ac, then b=c. 
Proof. From ab=ac we obtain ab-ac=0, hence a(b-c)=0. Since a is not a zero divisor and a(b-c)=0, we
must have b-c=0, and so b=c.

Corollary. If a is not a zero divisor of a commutative ring R, then for all b in R, the equation ax=b has
at most one solution.
Proof. If ax1=b and ax2=b , then ax1=ax2 . By cancellation x1=x2 .

A similar result holds for polynomial equations of higher degree.

(*) Proposition.  Let R be a commutative ring. If R has no zero divisors, then for every r, s in R, the
equation x2−rx+s=0 has at most two solutions in R. On the other hand, if R has non-zero elements a
and  b  such  that  ab=0  and  at  least  three  of  0,  a,  b  and  a+b  are  distinct,  then  the  equation
x2−(a+b)x=0  has at least three roots in R.

Proof. Suppose a and b are complementary zero divisors in R, so that a, b≠0 and ab=0. Then it’s easy
to check that  x2−(a+b)x=0  has four solutions:  a, b, a+b  and 0. So if at least three of these are
distinct, then the equation has at least three distinct roots.
Conversely, suppose R has no zero divisors, and suppose x2−rx+s=0 has two solutions a, b:
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a2−ra+s=0 and b2−rb+s=0
Now suppose that there is a third solution c, so that c2 −rc+s=0 .
Subtracting this last equation from each of the previous solutions we get

r(a−c)=a2−c2=(a−c)(a+c) and r(b−c)=b2−c2=(b−c)(b+c)
Since R has no zero divisors if c≠a and c≠b we can cancel a−c from the first equation and b−c  from
the second, to get r=a+c and r=b+c which implies that a=b. Thus if a≠b then c must be equal to a or
b, so there cannot be more than two solution to x2−rx+s=0 .

Proposition. In a commutative ring R, if a is unit then a is not a zero divisor.
Proof. Suppose a is a unit in R. We’ll prove that if ab=0, then b must be zero. Suppose ab=0. Since a is
a unit, there exits the inverse  a−1 . Multiply both sides on the left by a−1 to get  a−1(ab)=a−10=0 .
Reassociating the left side, we have (a−1 a)b=0 , hence b=0.

Corollary. A field has no zero divisors.
Proof. In a field every element is a unit (has a multiplicative inverse), thus there are no zero divisors.
The converse is not true. If a set has no zero divisor does not imply that is a field (e.g. ℤ ).

Theorem. In ℤ/mℤ
i. if (a , m)=1 then [a] is a unit;
ii. if 1<(a , m)<m then [a] is a zero divisor;
iii. if (a , m)=m then [a]=0  ( m∣a ).

Proof. 
(i) Proved via the Bezout’s identity (a , m)=1→ 1=as+mt →[1]=[a][s ] .
(ii) Suppose (a , m)=d and 1<d<m . Then a is not a multiple of m, so [a]≠[0] . But since d∣m , then
there  is  a  number  e with 1<e<m so  de=m  and [e]≠0 .  Since a=dk → ae=dek=mk then  ae is  a
multiple of m, so [a][e ]=[ae]=[0] . Thus [a] is a zero divisor.
(iii) If m∣a then a≡0(mod m)  and [a]=0 . 

Corollary. ℤ/mℤ is a field iff m is prime.
Proof. If [a] is any non-zero element of ℤ/mℤ , then m doesn’t divide a (contrapositive of iii). If m is
prime, follows that (a ,m)=1 , hence [a] is a unit. Thus every nonzero element of ℤ/mℤ  is a unit, so
ℤ/mℤ  is a field. If m is not prime, then m=ab with 1<a ,b<m ; then [a][b]=[m ]=[0] , while [a]
and [b] are not zero. Thus ℤ/mℤ  has zero divisors, and so cannot be a field.
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Theorem. If R is a finite commutative ring with identity, and a is any non-zero element of R, then a is
either a unit or a zero divisor.
Proof. Suppose  R has  n elements. Letting as=a⋯a (s factors) for any natural number  s, and  a0=1 ,
consider the set of elements a0 ,…, an . This is a set of n+1 elements in R, a set of n elements. So, at
least two of them should be equal. Suppose ar=ar+d for some r≥0 and  d>0 . Then  ar+d−ar=0 , so
ar (ad – 1)=0 . Choose r minimal so that ar (ad – 1)=0 . If r=0 , then ad−1=0 , so a(ad−1)=1 and a
is a unit of R. If r>0 , then (by minimality of r)  ar−1(ad – 1)≠0 , while a(ar−1(ad−1))=0 . Thus a is
a zero divisor of R.

Order. The above theorem proof shows that if a is a unit then there is some d>0 such that ad=1 . The
minimal such d>0 is called the order of a.

Corollary. A finite commutative ring with no zero divisors is a field.

Note: the fact that ℤ has no zero divisors and only two units ( ±1 ) is compatible with the theorem
since it requires that R is finite. Follows that ℤ contains elements that are no-zero divisors nor units.

Corollary. If a is a zero divisor it cannot have an inverse.

Proposition. If R is a ring with no zero divisors and S is a subring of R, then S has no zero divisors.
Proof. If S is a subring of R then every a, b in S are in R as well. If in R do not exist a , b≠0 such that
ab=0  then they doesn’t exist in S as well.

To  find  all  the  zero  divisors  in  ℤ/mℤ ,  first  find  the  units  Um ,  then  the  zero  divisors  are
ℤ/mℤ ∖ Um .

In ℤ/mℤ  given a zero divisor [a]m , the complementary zero divisors are found by finding the non-
zero  solutions  to  the  general  homogeneous  equation  [a]m X=0 .  We  know  the  solution  is

X=[ m
(a , m)

k ]  with k=1, …,(a , m) . 

Equations
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Proposition. In a ring R, for any b, if the non-homogeneous equation ax=b has some solution x=x0 ,
then the general solution to ax=b is of the form x=x0+t where t is a solution of the homogeneous
equation ax=0.
Proof.  If ax0=b and at=0 then  a(x0+t )=b .  To  show  that  every  solution  has  that  form  consider
another arbitrary solution x1 such that ax1=b . Then a(x1−x0)=b−b=0 , thus t=x1−x0 is a solution
to the homogeneous equation and x1=x0+ t .

Because a field has no zero divisors, the equation ax=0 has only one solution x=0 and consequently
the equation ax=b has a unique solution.

Rings Homomorphism

Let R and S be two rings and f  be a function from R to S. Then f : R → S is a ring homomorphism if f
satisfies, for all a and b in R, the following properties:

i. f (a+b)=f (a)+ f (b)
ii. f (a⋅b)=f (a)⋅f (b)
iii. f (1)=1
iv. f (0)=0

  Follows from i, f (b)= f (0+b)=f (0)+ f (b) , thus f (0) should be 0
v. f (−a)=− f (a)

  0=f (0)=f (a+(−a))=f (a)+f (−a) , the additive inverse is unique, thus f (−a)=−f (a)
vi. f (a−1)=f (a)−1 (if the inverse of a exists)

  1=f (1)=f (a⋅a−1)=f (a)⋅f (a−1) , the multiplicative inverse is unique, thus f (a−1)=f (a)−1

A ring homomorphism f is one-to-one if f is one-to-one as a function.
Note that in iii and iv the left-hand side 1 and 0 are elements of R, thus they can be called  1R  and 0R ,
the right-hand side 1 and 0 are elements of S, thus they can be called 1S and 0S .

Proposition. A ring homomorphism f is one-to-one iff 0 is the only element a of R with f (a)=0 .
Proof. If a≠0 and f (a)=0 , then since f (0)=0 f is not one-to-one. On the other hand, if f is not one-to-
one, then there are two different elements a and b of R so that f (a)=f (b) . 
But then 0=f (a)−f (b)= f (a−b) and a-b is not the zero element of R.
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Definition. Let f : R → S be a homomorphism. The kernel of f, written ker ( f ) , is the set of elements
r∈R  so that f (r )=0 . Concisely, ker ( f )={r∈R : f (r )=0} .
The size of ker ( f ) describes how far f is from being one-to-one. If ker ( f )={0 } then is one-to-one.

Proposition. Let f : R →S be a ring homomorphism and let s be in the image of f. 
Then {r∈R : f (r )=s} is in a one-to-one correspondence with ker( f ) .
Proof. It is easy to see that if  f (r0)=s , then {r∈R : f (r )=s}={r 0+k : k∈ker ( f )} . That is, f (r0)=s
and f (k )=0 then f (r0+k )=f (r 0)+ f (k )=s+0=s

Corollary. If ker ( f ) has m elements then f is an m-to-one function.

Proposition. Let f : R →S be a homomorphism where R is a field and 1≠0 in S. Then f is one-to-one.
Proof.  Suppose a≠0 in  R, we show that  f (a)≠0 .  Since  R is a field,  a has an inverse  a−1 .  Then
1= f (1)= f (a⋅a−1)= f (a)⋅f (a−1) . If f (a)=0 then 1=0, and this is impossible since by hypothesis 1≠0
in S. Thus the kernel contains only 0 and f is one-to-one.

Homomorphisms with domain ℤ

Proposition.  The function ℤ→ R defined by  f (n)=n⋅1R ,  f (1)=1R  is a homomorphism and is the
only ring homomorphism from ℤ to R.
Proof. To prove that it is a homomorphism we need to check the properties i, ii and iii.

i. for any m, n in ℤ f (m+n)=f (m)+ f (n)
(m+n)⋅1R=m⋅1R+n⋅1R this immediately follows from the distributive law in R.

ii. for any m, n in ℤ f (m⋅n)=f (m)⋅f (n)
(m⋅n)⋅1R=m⋅1R⋅n⋅1R this follows the distributive law in R

n⋅1R=1R+…+1R  (n summands) and so

(m⋅1R)(n⋅1R)= (m⋅1R )(1R+...+1R) =
= (m⋅1R)+...+(m⋅1R) = (n summands)
= 1R+...+1R= (m n summands)
= (m⋅n)⋅1R

iii.  f (1)=1⋅1R=1R . This is trivially true by definition.

To prove that is the only ring homomorphism, we must show that if f is a homomorphism from ℤ to R,
then f (n)=n⋅1R . The proof is by induction.
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Given that f (1)=1R  and assuming that for k≥1 ,  f (k )=k⋅1R . Then f (k+1)=f (k)+f (1)=f (k )+1R .
Then  for  any  n>0,  f (n)=n⋅1R=1R+….+1R .  Since  the  definition  f (n)=n⋅1R  is  forced  by  the
condition that f is a homomorphism, then this is the only ring homomorphism.

For example.
1. If R=ℤ then the homomorphism f : ℤ→ ℤ is defined by f (n)=n⋅1=n
2. If R=ℚ then the homomorphism f : ℤ→ℚ is defined by f (n)=n⋅1 /1=n /1
3. If R=ℤ/mℤ then the homomorphism f m:ℤ→ℤ/mℤ is defined by f (n)=n⋅[1]m=[n]m
Note that f m is onto but not one-to-one. In fact, two integers that are congruent modulo m are mapped
by f m to the same congruence class. The kernel of f m is the infinite set of integers multiples of m. That
is ker (f m)={x∈ℤ: f m(x)∈[0 ]m} .

Ring characteristic

Definition. Let f : ℤ→ R be a homomorphism. If f is one-to-one then R is said to have characteristic
zero.

If  f is  not  one-to-one  then  there  is  some  non-zero  integer  c in  the  ker ( f ) .  If  f (c)=0 ,  then
f (−c)=−f (c)=−0=0 , so there is a natural number in ker ( f ) . 

Proposition. If f : ℤ→ R is a homomorphism and m>0 is the smallest natural number in ker ( f ) , then
ker ( f )  is the set of integers that are multiples of m.
Proof. If  b in  ker ( f ) , then divide  b by  m: b=mq+r where  0≤r<m . Applying f to the equation we
have: 0=f (b)=f (m) f (q)+f (r )=0⋅f (q)+ f (r )=f (r) . Thus r should be zero and b is a multiple of m.

Let m be the smallest natural number in ker ( f )  and mℤ be the set of all multiples of m.

Proposition. Let R be a commutative ring with no zero divisors, and f : ℤ→ R . If ker ( f )=mℤ  and
m≠0 , them m is prime.
Proof.  If  m is  not  prime,  then  m=ab,  with  0<a<m  and  0<b<m .  Then  f (a)≠0 ,  f (b)≠0 ,  but
0=f (m)=f (ab)=f (a) f (b) , so R has zero divisors.

Definition. If R has no zero divisors, and f :ℤ→ R by f (n)=n⋅1R is not one-to-one, then ker ( f )=pℤ
where p is a prime number. In that case we say that R has characteristic p.
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Corollary. Any field, a ring with no-zero divisors (all elements are units), has either characteristic zero
or p for some prime p.

Corollary. If F is a field with a finite number of elements, then F has characteristic p for some prime
number p.
Proof. Since ℤ has an infinite number of elements, then f :ℤ→ R cannot be one-to-one and thus cannot
have characteristic zero. The thesis follows, by exclusion, from the previous corollary.

Isomorphism

Definition. A ring homomorphism f : R →S is an isomorphism if f is one-to-one and onto. Two rings R
and S are isomorphic if there is an isomorphism between them.

Two isomorphic groups from an abstract point of view are “equal”. That is they can be manipulated in
the same way.

Proposition. Let  R  be  a  commutative  ring  and  let f :ℤ→ R be  the  homomorphism  defined  by
f (n)=n ·1R  for all n in  ℤ . If f is one-to-one, so that R has characteristic zero, then f defines an
isomorphism from ℤ onto {n ·1R : n∈ℤ}⊆R .

Proof.  If  R has  characteristic  zero.  A function  maps  onto  its  image.  Thus  if  f is  a  one-to-one
homomorphism, then f is an isomorphism from its domain to its image.

For example: f :ℤ→ℚ is an isomorphism from ℤ onto {n⋅1/1: n∈ℤ}⊆ℚ  but not onto ℚ .

(rivedi)  Homomorphism  Theorem.  Let  R be  a  commutative  ring  and  let f :ℤ→ R be  the
homomorphism defined by f (n)=n⋅1R for all n in ℤ . If f is not one-to-one and mℤ⊆ker (f ) for some
m≠0 in ℤ ,  then f  induces  a  homomorphism f̄ from ℤ/mℤ onto {n · 1R : n∈ℤ}⊆R ,  defined  by
f̄ ([a]m)= f (a)=a⋅1R .

If ker ( f )=mℤ then f̄ is an isomorphism from ℤ/mℤ onto {n ·1R : n∈ℤ}⊆R

Proof. … ???

(rivedi) Corollary.  Let R be a commutative ring with no zero divisors. If R has characteristic zero,
then R contains a subring isomorphic to  ℤ . If R has characteristic p, a prime, then R contains a
subring isomorphic to ℤ/ pℤ .
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(rivedi) Corollary.  If d, m are integers and d∣m , then the homomorphism f :ℤ→ℤ/d ℤ defined by
f (n)=n ·1  induces a homomorphism f̄ :ℤ/mℤ→ℤ/d ℤ , and a map from Um , the group of units of
ℤ/mℤ , onto Ud

Fermat’s and Euler’s Theorems

Order of Elements

There are exactly m congruence classes modulo m. If we look at the powers of a:  1,a ,a2 , a3, . . . ,am ,
then since there are m+1 powers and m congruence classes, at least two of the powers must be in the
same congruence class.

Suppose ar≡as(mod m) for some r≥0  and s>r . Then at+k≡as+k (mod m) for every k≥0 . So from as

on the powers of a modulo m repeat earlier powers of a.

Proposition. If a and m are coprime, then at≡1(mod m) for some t, 0<t<m .

Proof. Since (a , m)=1  then m does not divide as for any s, and so the m numbers 1,a , a2 ,…,am−1  all
belong to the m−1 congruence classes other than the congruence class of 0. So two of the numbers
must  be  in  the  same congruence  class:  there  are  numbers  s and  t with s≥0 and  0<t<m  so  that
as≡as+t (mod m) . Since  a and  m are coprime the cancellation property holds and we can cancel the
common factor as from both sides to get 1≡a t(mod m) .

In other words, if [a]m is a unit then [at]m=[1]m for some t with 0<t<m .

Order. Let m>1 and a be any integer coprime to m. The order of a modulo m is the smallest positive
integer e so that ae≡1(mod m) . 

Existence.  We  know  that  if (a , m)=1 then  there  is  a  positive  exponent  t,  0<t<m ,  such  that
at≡1(mod m) . Hence by WOP there is the least one.
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Proposition. If e is the order of a modulo m, and a f≡1(mod m) , then e divides f.

Proof.  Divide  e into  f to  get f=eq+r,  with  0≤r<e .  Then  a f≡(ae)q⋅ar≡1q⋅ar≡ar (mod m) ,  so
ar≡1(mod m) . But r<e and e is the least positive number with ae≡1(mod m) . So r=0 and e divides
f.

Proposition. If a has order e modulo m and d>0 , then the order of ad modulo m is e /(d , e) .

Proof. Recall that de=[d , e ](d , e) or that e /(d , e)=[d , e]/d . Since e divides [d , e ] and  ae≡1(mod m)

, we have a[d ,e ]≡(ae)k≡1(mod m) . Follows that (ad)
[d ,e]

d ≡(ad)
e

(d, e)≡1(mod m) . To show that is the order
of ad , suppose that (ad)s≡1(mod m) for some s>0 . Then ads≡1(mod m) . Since e is the order of a,
then e divides ds. So ds is a common multiple of d and e, so ds≥[d , e ] , hence  s≥[d , e ]/d=e /(d , e) .

Fermat’s Theorem

Fermat’s Theorem. If p is a prime and a is an integer not divisible by p, then [a]p
p−1=[1] p .

Proof. Write the multiplication table for ℤ/ pℤ (we omit the brackets [ ]p in the table)

⋅ 1 2 3 ... p-1

1 1 2 3 ... (p-1)

2 2 2 ⋅ 2 2 ⋅ 3 ... 2 ⋅ (p-1)

3 3 3 ⋅ 2 3 ⋅ 3 ... 3 ⋅ (p-1)
⋮ ⋮ ⋮ ⋮ ⋮

a a a ⋅ 2 a ⋅ 3 ... a ⋅ (p-1)
⋮ ⋮ ⋮ ⋮

p-1 p-1 (p-1) ⋅ 2 (p-1) ⋅ 2 ... (p-1) ⋅ (p-1)

Let U be the set of all the non-zero elements in ℤ/ pℤ . For any [a]≠[0] let a⋅U denote the set  where
each element of U is multiplied by [a] . Because (a , p)=1 , then [a] is a unit in ℤ/ pℤ . Given [u ]
an arbitrary element of  U, then  [u ]=[1] [u]=[a][a−1 ] [u]=[a][a−1 u] . Since a−1 is a unit as well, for
closure of the set of units U: [a−1 u]∈U .  Follows that [u ]∈a⋅U  and thus that U is a subset of a⋅U .
Thus U and a⋅U both have p-1 elements. Follows that aU=U .
The product of the elements of a⋅U is [a⋅1]⋅[a⋅2]⋅[a⋅3]⋯[a⋅(p−1)] = [ap−1][1⋅2⋅3⋯( p−1)] .
While the product of the elements of U is [1⋅2⋅3⋯(p−1)] .

Because aU=U  then [ap−1][1⋅2⋅3⋯( p−1)]=[1⋅2⋅3⋯( p−1)] → [ap−1]=[1] .
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Corollary. If p is prime and a is not divisible by p, then the order of a divides p-1.
Proof. Immediately follows from the Fermat’s Theorem and the already proven order property: if e is
the order of a, and [af ]=[1] , then e∣f .

Corollary. If p is prime, then for any number a, [ap]=[a] .

Proof.  If  (a , p)=1  then,  since  [ap−1]=[1] ,  multiplying  both  sides  by  a we  get  [ap]=[a] .  If
(a , p)≠1  then p∣a  thus [a]=[0]  and [ap]=[a] .

Euler’s Theorem. For every unit [a]  of ℤ/mℤ : [a]ϕ(m)=[1]
Proof.  Let  U be  the  set  of ϕ(m) units  modulo  m and a⋅U the  set  where  each unit  of  U has  been
multiplied  by  a,  with [a] a  unit  of  U.  Given  [u ]  an  arbitrary  element  of  U,  then
[u ]=[1] [u]=[a][a−1] [u]=[a][a−1 u] , so [u ]∈a⋅U .  The argument proceeds similarly to the Fermat’s
theorem proof by observing that U=a⋅U both have ϕ(m) elements. 

Notice that Fermat’s theorem is a special case of Euler’s theorem. If m is prime then ϕ(m)=m−1 .

Corollary. If (a,m)=1, then the order of a divides ϕ(m) .

Corollary. If (a,m)=1, then for any number a, [aϕ(m)+1]=[a ] .

Corollary. If [a] is a unit modulo m. The inverse of [a] is [aϕ(m)−1] .
Proof. Immediately follows the Euler’s Theorem.

Montgomery reduction

Given the modulus m, we can choose a radix r>m such that m is coprime to r, and such that finding the 
least non-negative residue of any number modulo r is easy.
Let b be a number <rm. We want to find b modulo m without never dividing by m directly.

Initialization
Since m and r are coprime, we can find r ' and m' so that rr '=1+mm' , where 0<r '<m  and 0<m '<r
. We also find the least non-negative residue w of r2 modulo m.
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First part: find br ' mod m .
Let >> s=bm ' mod r << then multiplying by m yields sm≡bmm ' (mod rm) .
Since s<r then sm<rm and sm is the largest non-negative residue of bmm' modulo rm. Then

b+sm≡b+bmm '=b(1+mm ')=brr ' (mod rm)   (that is why we require that (r ,m)=1 )
So b+sm is a multiple of r. Divide the congruence by r, to get  >> z=(b+sm)/r <<.
Then z≡br ' (mod m) and we also have that z<2m.
To see that z<2m recall that b<rm by assumption, and sm<rm. So rz=b+sm<2rm, hence z<2m.
The last non-negative residue c of br ' mod m is then either z, if z < m, or z-m, if m≤z<2 m .

Second part: find b mod m .
Multiply c by w, then cw≡br ' r2≡br (mod m) .
If we then repeat the first part for cw instead of b, we will end up with a number d<m such that

d≡cwr '≡br ' r2 r '≡b (mod m)
Note that we’re arrived to the result without never directly dividing by m.

Algorithm Outline
• s=bm ' mod r
• z=(b+sm)/r ,  z < 2m
• c=z, if z < m, or c=z-m, if m≤z<2 m .
• s '=cwm' mod r
• z '=(cw+s ' m)/r ,  z ' < 2m
• d= z ' , if z ' < m, or c= z ' -m, if m≤z '<2m .
• d=b mod m

RSA cryptosystem

Bob chooses two different large primes  p and  q that he keeps secret, and sets  m=pq. He chooses an
encrypting exponent e coprime to ϕ(m)=( p−1)(q−1) . Then Bob finds a number d such that

ed≡1(mod ϕ(m))
Then d is the inverse of e modulo ϕ(m) . Bob can find d by solving the equation

ed+ϕ(m)k=1
Since e and ϕ(m) are coprime, the equation can be solved by the extended Euclidean Algorithm. 

ed=1+ϕ(m)k
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Bob keeps d secret but broadcasts m and e to Alice.
Alice has a message consisting of a sequence of words. Each word is a number  w less than  m. To
encrypt a word Alice computes:

c=we mod m
That is, Alice finds the number c<m that is congruent to w e modulo m.
To decrypt the ciphertext, Bob computes

w=cd mod m
For since ed≡1(mod ϕ(m)) , we have

cd=(we)d=w1+ϕ(m)k≡w⋅wϕ(m)k≡w(mod m)

If the factorization of m is known then ϕ(m) can be found instantly and the decoding exponent d can be
found  by  Euclid’s  algorithm  in  a  few  seconds.  Thus  the  effectiveness  of  the  RSA cryptosystem
ultimately  lies  in  the  fact  that  factoring  large  numbers  into  products  of  primes  is  an  inefficient
computational process.

Pseudoprimes

The most naive approach to test if a number is prime is by trial division. If a number m is not divisible
by any prime ≤√m  then is prime.

Fermat’s theorem says that if  m is a prime number and  a an integer relatively prime to  m, then  m
divides am−1 – 1 . The contrapositive is

Proposition. If am−1−1 is not divisible by m, then m is not prime.
The (a , m)=1 condition has been removed. Indeed if (a , m)≠1 then m is not prime anyway.

The 2-pseudoprime test. If 2m−1−1 is not divisible by m, then m is not prime.
If a number is prime then m passes the 2-pseudoprime test, but the converse is not true.

A number m is a 2-pseudoprime if is composite and passes the 2-pseudoprime test: 2m−1≡1(mod m) . 
Has been empirically proved that a randomly chosen number that satisfies the  2-pseudoprime test is
likely to be prime.
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Note that no even number can pass the test: if  m=2k  and (m=2k )∣(2m−1−1) then an odd number is
divisible by an even number. That is impossible.

Proposition. If a number of the form an – 1 is prime, then a=2 and n is prime.
Proof.
i. In general  an – 1=(a−1)(an−1+an−1+...+1) , thus  (a−1)∣(an−1) . Because an−1 is prime, the only
option is that a-1=1, that is a=2.
ii. If  n is not prime then n=xy and  (an−1)=(axy−1)=(ax – 1)((ax )y−1+(ax) y−2+…+1) . Thus  ax−1
divides an – 1 .

A perfect number is equal to the sum of its proper divisors. For example 6=1+2+3.

Proposition. If 2n−1 is prime, then m=2n−1(2n−1) is a perfect number.
Proof. TODO?

Proposition. If n passes the 2-pseudoprime test, then 2n – 1 does also. 
Proof. By hypothesis n∣(2n−1−1) then 2n−1−1=nk for some integer k. To prove that 2n – 1 passes the 2-

pseudoprime test we must show that (2n – 1)∣(2(2n−1)−1−1) . 

2(2n−1)−1−1=22(2n−1−1)−1=22nk−1=(2n)2 k−1=(2n−1)((2n)2 k−1+(2n)2 k−2+...+1)  .

Thus if n is prime, 2n – 1 is either prime or a 2-pseudoprime.

Marsenne numbers. An integer sequence defined as M n=2n –1 .

Fermat numbers.  An integer sequence defined as Fn=22n

+1 .

Proposition. If a number of the form Fn=2a+1 is prime then a must be of the form 2n for some n.

Proposition. Every Fermat number passes the 2-pseudoprime test.

Proof. We have to prove that 2F n –1≡1(mod Fn) or more explicitly that 2(22n

+1)−1=222n

≡1(mod Fn) .

Because (a−1)≡−1(mod a) then Fn – 1≡−1(mod Fn) or 22n

≡−1(mod Fn) .

Raising both sides by 2(2n – n) we get (22n

)2(2n−n)

=22(n+2n−n)

=222n

=2Fn−1 ≡ (−1)2(2
n−n)

=1 (mod Fn) .
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If a number m is not prime and m∣(am−1−1) then we say that m passes the a-pseudoprime test and m is
an a-pseudoprime.

Carmichael numbers. A composite number m is a Carmichael number if m is a-pseudoprime for every
number a coprime to m.
By the Fermat’s theorem we know that if m fails the a-pseudoprime test for a single number a<m then
m is composite.
The existence of Carmichael numbers dashes the hope that Fermat’s Theorem alone can be used as a
primality test. If m is a Carmichael number then no amount of a-pseudoprime testing will reveal that m
is composite (unless we are lucky enough to pick a not coprime to m).

Pollard p-1 factoring algorithm

Let k be a number ≥2 . A number m is k-smooth if every prime divisor of m is ≤k .
The larger k is, the more k-smooth numbers there are.

Groups

The properties we’ve seen so far, as the Euler’s theorem, holds for any group G.

Abstract Fermat Theorem. Let G be an abelian group with n elements. Then for any a in G, an=e ,
the identity element of G.
Proof.  Let u1 ,…,un be  the  elements  of  G,  and  let  a be  any  element  of  G.  Consider  the  set
aG={au1 ,…, aun } . Then aG is exactly the same as the set G: all the elements of aG are distinct and
every element of  G is in  aG.  Now multiply the elements of  aG together and all the elements of  G
together, equate the two products and cancel the common factors. We’ll be left with  an=e .

The proof is supported by the following two properties.
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Generalized Associativity. If G is a group, so that a(bc)=(ab)c for all a, b, c in G, then for every n>3
all possible ways of associating the product of every n elements of G are equal.
Proof. By induction, we assume the result true for  m<n and we prove it for n.
We show that  any way  of  parenthesization  of  the  product a1 a2⋯an is  equal  to  the  left-associated
expression (...((a1 a2)a3)…an) .  For  any  form  of  parenthesized  expression  there  is  an  outermost
multiplication, thus we can split the expression in two: AB=(a1⋯am)(am+1⋯an) both parenthesized in
some arbitrary way. Applying the inductive hypothesis we can rewrite the sub-expressions as left-
associated expressions A=(...((a1 a2)a3)…am)  and B=(...((am+1 am+2)am+3)…an) .

If B is composed by a single element we are already done; else we can write AB as A (C an) , where C
is still a left associated expression, and (base case) rewrite the expression as (AC)an . At this point we
can repeat the process for  AC. Following the algorithm we end up with a left-associated expression
equivalent to the original one.

Generalized Commutativity. If G is an abelian group, so that ab=ba for all a, b in G, then for every
n>2, all possible ways of multiplying n elements a1 ,…, an of G, regardless of order, give the same
element of G.
Proof.  Call  the product  w=a1 v  apply induction to  v.  If  w=c a1 b ,  we use  commutativity  to  get
w=a1 cb  and apply induction to cb.

If G is the group Um of the ϕ(m) units of ℤ/mℤ for m any number ≥2 , we have Euler’s theorem.

Subgroups

Definition. Let G be a group with operation * and identity e. A subgroup H of G is a nonempty subset
of G with two properties:

i. if a, b are in H, then a*b is in H
ii. if a is in H so is a−1

The two properties together imply that e∈H : (a∈H → a−1∈H ) → a∗a−1=e∈H .

Example. If G=ℤ and the operation is +, then mℤ , the set of multiples of m, is a subgroup of G.
a=ms and b=mt then a+b=m(a+t)=mk∈mℤ

a=mk∈mℤ then a−1=m(−k )∈mℤ
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Trivial subgroups of G are G itself and the subgroup consisting only of the identity element of G.

Cyclic Subgroup. Let G be a group with operation * and identity e. Fix an element a of G. The cyclic
subgroup generated by  a is the set  H of elements of  G of the form an for all  integers  n.  Here  a0

denotes the identity element e, an n>0 denotes a∗…∗a , and a−n for n>0 denotes a−1∗…∗a−1 .
The cyclic subgroup of G generated by a is denoted by ⟨a⟩ .
A group G is cyclic if G=⟨a⟩ for some a in G.

Example. If G=ℤ and the operation is +, then the cyclic subgroup ⟨m⟩ generated by the integer  m is
mℤ , the set of all integers rm, where r is any element of ℤ .

mn=m+…+m=nm

Proposition. Suppose G is a finite group with n elements. Every element a of G has an order d ≤n  
( ad=e , the identity of G, see the Zero Divisors chapter). If a has order d, then the cyclic subgroup
⟨a⟩  of G has d elements.

⟨a⟩={a , a2, ..., ad }
Hence the order of a is equal to the number of elements in ⟨a⟩ .

Proof.  Let  d be the order of  a, and let A={a1, …, ad } where  ad=a0=e . For every  k>0 ,  k=dq+r
with 0≤r<d . Then ak=adq ar=ar and A contains every positive power of a. In particular A is closed
under the operation *. Also, for each r with 1≤r<d , ar ad−r=ad=e  (Note: ad is its own inverse). So
all the inverses are in A as well. Follows that A is a subgroup of G.
Is  left  to  show  that  all  the  elements  of  ⟨a⟩  are  all  different.  Suppose  that  as=as+ k  where
1≤s<s+k≤d . Then, canceling as we have that  e=ak . But since 1≤k<d this last equation violates
that  d is the order of a. Hence the elements in ⟨a⟩  are all different and their number is equal to the
order d.

Proposition.  If  ⟨a⟩  is a cyclic subgroup of G of order m=rs, then ⟨ar⟩={ar , a2r , ... , asr }  is a cyclic
subgroup of ⟨a⟩ , hence a cyclic subgroup of G, of order s.
Proof. Trivially prove that has the two subgroup properties and that has s elements.

Most groups have subgroups other than the trivial subgroups.

Proposition. If G is an abelian group then G has a non-trivial subgroup unless the order n of G is 1 or
a prime p.
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Proof. For each a≠e in  G, consider the subgroup  ⟨a⟩  generated by  a. If  ⟨a⟩≠G  then it is a non-
trivial subgroup of G. If ⟨a⟩=G  and n=rs with r, s > 1, then ⟨ar⟩  has order s, so is a proper subgroup
of G. Thus if G has only trivial subgroups, then the order of G should be 1 or a prime (or infinite?).

For the previous proposition we have that a sufficient condition for a cyclic subgroup ⟨a⟩  to have a
non trivial subgroup is that its order m is a composite number, m=sr. In such a case a cyclic subgroup
can be easily defined as ⟨ar⟩ . But are all its subgroups cyclic?

Proposition. A subgroup of a cyclic group ⟨a⟩  is cyclic.

Proof. Let H be a subgroup of ⟨a⟩ . If H={e=ad} then it is cyclic subgroup generated by ad .

Let H≠{e=ad} . By definition of a cyclic group every element of ⟨a⟩  has the form an . Then, as H is
a subgroup of ⟨a⟩ , the same holds for H, an∈H for some n∈ℤ . Let m be the smallest positive integer
such that am∈H . Consider an arbitrary element b∈H , for what we just said, b=an  for some n∈ℤ .
For the division theorem n=mq+r with  0≤r<m . Follows that an=(am)q ar and hence  ar=an(am)−q ,
since am∈H so is its inverse (am)−1  and all powers of its inverse (for closure).

Since both an and (am)−q are in H, again for closure,  ar∈H .  However since m was selected to be the
smallest positive integer such that am∈H and 0≤r<m , then should be r=0. Follows that b=an=(am)q

is a power of am . By the definition H=⟨am ⟩  is cyclic.

Proposition. When G is a finite group with operation *. Then a non empty subset H of G is a subgroup
iff H is closed under * (there is no need to include the inverse condition).
Proof. If  G is a finite group with n elements then an arbitrary element  a has an order  d<n. Thus the
inverse of a is trivially defined as ad−1 . 
The inverse existence that is implicit derived from the fact that G is finite, thus every element has an
order d.

Cosets and Lagrange’s Theorems

Left Coset (Definition). Let G be a group with operation *, and H a subgroup. For any b in G, the left
coset of b, denoted b*H, is the set of elements b*h where h runs through all elements of H

b∗H={b∗h: h∈H }

Because only H contains the identity element, only H is a subgroup while the other cosets are not. 
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Example. Let G=ℤ , H=mℤ for some m>1 and the operation * is +. If a is any integer, then a+mℤ ,
the left coset of a, is the set of integers of the form a+mk for k any integer, that is the set of integers
congruent to  a modulo  m. Then the coset a+mℤ is equal to the coset b+mℤ iff a is congruent to  b
modulo  m. There are  m cosets, namely:  0+mℤ ,  1+mℤ , … ,  (m−1)+mℤ . This is because any
integer is congruent modulo m to exactly one of the numbers 0,1,…,(m−1) .

Proposition. Let H be a subgroup of a group G. Two left cosets are either disjoint or equal.
Proof.  Suppose a*H  and b*H  have some element  c in  common.  Then  c=a∗h i=b∗h j ,  for  some
hi , h j∈H . We show that a*H is thus contained in b*H. We know that a∗hi=b∗h j is in b*H. Let a∗h '
be any element of a∗H . Then, since H is a group, we can find some t in H so that hi∗t=h' . But then
a∗h '=a∗hi∗t=b∗h j∗t , an element of  b*H. So  a∗H⊆b∗H . In a similar way we can prove that
b∗H⊆a∗H . Thus a∗H=b∗H .

Proposition. If a*H is any coset of H, then the number of elements in a*H is equal to the number of
elements in H.
Proof. The idea is to define a bijective function T from H to a*H by the rule, T (h)=a∗h . To see that
T is a bijection, observe that we can define an inverse function S from a*H to H as

 S (a∗h)=a−1∗(a∗h)=(a−1∗a)∗h=e∗h=h
So the composition S∘T is the identity function on H.

If G is an abelian group with n elements, when for any a in G, the order of a divides n. The number of
elements of the subgroup generated by an element a∈G is equal to the order of a. Thus the number of
elements of ⟨a⟩  divides n.

Lagrange’s Theorem. Let G be a finite group and H a subgroup of G. Then the number of elements of
H divides the number of elements of G.
Proof. Let G have n elements and H have m elements. Write G as a union of left cosets

G=(a1∗H)∪(a2∗H )∪…∪(an∗H )

Unless H contains only the identity element, there will be cosets elements in this union that are equal.
So starting from the coset a2∗H , look at each coset ak+1∗H to see if it has an element in common with
one of the early cosets a1∗H … ak∗H . If so, then bk +1∗H is equal to the coset it has an element in
common with. So toss bk +1∗H out. Once we toss out all the duplicates, we’re left with G as the disjoint
union of the remaining cosets

G=(a1∗H)∪…∪(as∗H )
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The  previous  proposition  tells  us  that  every  coset  in  the  disjoint  union  has  the  same  number  of
elements, namely m, the number of elements in H. Thus if G has n elements and s cosets, then n = ms.

Corollary. For every element b of a finite group G, the order of b divides the number of elements of G.
Proof. If H=⟨b⟩  is the subgroup generated by b. The order of b is the number of elements of H. The
corollary then follows from Lagrange’s theorem.

Corollary. Euler’s theorem.
Proof. Let G=U m the multiplicative group of units of ℤ/mℤ and let a be any number in Um . Then the
order d of [a]m is the number of elements of the subgroup ⟨a⟩  of Um . Hence d divides the number of

elements  in  Um ,  namely  ϕ(m) ,  and ϕ(m)=ds for  some number  s. Then  [a]ϕ(m)=[a]ds=[1]s=[1] ;

hence the congruence notation aϕ(m)≡1(mod m) .

In usual terminology the number of elements of a finite group G is called the  order of  G. Then the
order of H divides the order of G. The number of cosets of H in G is called the index of H in G.

 ( order of G ) = ( order of H ) × ( index of H in G )
The two notions of order, for an elements and for a group, are compatible.

For abelian groups the left cosets and right cosets are the same. For non-abelian groups this could not
be the case.

Fermat’s probabilistic primality test

Let Um be the group of units of ℤ/mℤ . Then Um is an abelian group containing ϕ(m)  elements. Let

Um(m−1)={[a ]∈U m: [a]m−1=[1]}

Then Um(m−1) is the set of units a such that m passes the a-pseudoprime test.

Note that for each [a] in  Um , it is only guaranteed that  [a]ϕ(m)=[1] . Obviously we don’t generally
know how many elements  Um  has; if we already know that |Um|<m−1 then  m would be composite
and the primality test is not required. 

Proposition. Um(m−1)  is a subgroup of Um .

Proof. Given [a]  and [b]  in Um(m−1) . Since [a]m−1=[b]m−1=[1] , then [a]m−1[b]m−1=[ab ]m−1=[1]
Thus  Um(m−1)  is closed under the product. Furthermore [a]m−1 is its own multiplicative inverse.
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Corollary.  If  m  passes  the  a-pseudoprime  test  and  the  b-pseudoprime  test,  it  passes  the  ab-
pseudoprime test.

By Fermat’s theorem, if  m is prime then Um(m−1)=U m .  Unfortunately, the converse is not true. If
Um(m−1)=U m  then  m can  be  prime or  a  Carmichael  number.  But  as  soon as  we find  out  that
Um(m−1)≠U m , i.e. m doesn’t pass an a-pseudoprime test, we can assert that m is composite.

Proposition. If m is not prime and not a Carmichael number, then m will pass the a-pseudoprime test
for at most half of the numbers a, 1≤a≤m .
Proof.  If Um(m−1)≠U m and  f is the number of elements of Um(m−1) then among the  s=ϕ(m)/ f
cosets  of Um(m−1) in Um only  the  f elements  of Um(m−1) satisfy  [a]m−1=[1] ,  while  (s−1) f
elements not. Since Um(m−1)≠U m , then there are at least two cosets, so s≥2 and (s−1) f ≥f . Thus,
since s≥2 , we have that the test will fail for at least half of the elements.

In other words, the probability that a is composite and pass a-pseudoprime test ≤ ½.
If we repeat the test for say 20 randomly chosen a values, then the probability that m is composite and
passes the all the a-pseudoprime tests is less than 1/220 or less than one in a million.

Equations

Generalization of equation solving result for any Abelian group.
Given e the identity element of G, the equation xn=e is homogeneous. 

Proposition. Let G be an abelian group with operation multiplication and identity e.
Let G(n)={h∈G : hn=e } be the set of solutions in G of the equation xn=e . Given c∈G , if there is
some  b  in  G  so  that  bn=c ,  then  the  set  of  solutions  to  the  equation  xn=c  is  the  coset
bG(n)={bh : h∈G(n)} .

Proof. If  bn=c , then for all  h in  G(n) ,  (bh)n=bnhn=c⋅e=c . Conversely, if sn=c for some s in  G,
then (b−1 s)n=b−n sn=c−1 c=e , so b−1 s=h∈G(n) . Thus s=bh  is in bG(n) . 

Proposition. The set of solution of a homogeneous equation is a subgroup of G.
Proof. Trivial.
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Homomorphism

Many concepts of group homomorphism equal to the ones defined for ring’s homomorphisms.
Let G and H be groups with an operation * and identity eG and eH , respectively.

Group homomorphism. A function f :G → H is a group homomorphism if
f (g1∗g2)=f (g1)∗f (g2) for all g1, g2∈G

f (eG)=eH

The inverse of f (g) is f (g)−1=f (g−1) and is unique.

eH=f (eG)=f (g∗g−1)=f (g)∗f (g−1)=f (g)∗f (g)−1

Example. If  R is a ring and we only consider only the operation +, then  R is an additive group. If
f : R → S  is a ring homomorphism, then f is a group homomorphism from the additive group of R and
the additive group of S.
Example. If U (R) is the group of units of a ring  R. If f : R → S is a ring homomorphism, then if we
consider the operation ⋅ f is a group homomorphism from U (R) to U (S) .
Example. If H is a subgroup of a group G, then the inclusion map i : H →G , which takes an element
of H and views it in G, is a group homomorphism.
Example. If  G is a group, and f :G → H is a function which takes every element of  G to the identity
element of an arbitrary group H, then f is a homomorphism, also called the zero-homomorphism.

A group homomorphism f :G → H is one-to-one if it is one-to-one as a function. Or in other words if its
kernel is composed by only the identity element.

ker( f )={g∈G : f (g)=e }

Proposition. Let f :G → H be a group homomorphism. Then ker ( f ) is a subgroup of G.
Proof. Given a ,b∈ker( f ) , since  f is a group homomorphism, f (a∗b)=f (a)∗f (b)=eH∗eH=e H then

a∗b∈ker (f ) as  well.  Also  eH=f (eG)=f (a∗a−1)=f (a)∗f (a−1)=eH∗f (a−1)=f (a−1) ,  thus

a−1∈ker (f ) . Follows that H is a subgroup of G.

Proposition.  Let f :G → H be a group homomorphism. The map f is one-to-one iff ker ( f )={e } .
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Proof. If ker ( f )≠{e } then there is an a in G such that f (a)=e , thus is not one-to-one. Conversely, if f
is not one-to-one then given a , b∈G such that a≠b then  f (a)= f (b) .  Assuming both  a , b≠eG then

a−1≠eG and eH=f (a)−1∗f (b)= f (a−1∗b) with a−1∗b≠eH . Thus ker ( f )≠{e } .

Definition. Let f :G → H be a group homomorphism. The image of f is the set f (G) of elements of H
that have the form f (g) for some g∈G .

f (G)={h∈H : h=f (g) , for some g∈G }

Proposition. The image of a group homomorphism f :G → H is a subgroup of H.
Proof.  Given  f (a) , f (b)∈f (G) .  Since  f is  an  homomorphism,  f (a)∗f (b)=f (a∗b)∈ f (G) .
Furthermore eH=f (eG)= f (a∗a−1)=f (a)∗f (a−1) , thus if f (a)∈G then f (a)−1∈f (G) .

Isomorphism. A group homomorphism f :G → H is an isomorphism if f is one-to-one and onto.

Proposition. If f : R → S is  an  isomorphism  of  rings,  then  f  restricts  to  an  isomorphism
f :U (R)→U (S)  from the group of units of R to the group of units of S.
Proof. If u is a unit of R then f (u) is a unit of S. Suppose t is a unit of S. Let r be the unique element in
R so  that f (r )=t (r is  unique  because  f is  one-to-one)  and let r ' in  R be  so that f (r ' )=t−1 .  Then
f (r∗r ')=f (r)∗f (r ' )=t∗t−1=eS .  But f (eR)=eS and  f,  being  an  isomorphism,  is  one-to-one.  Thus
r∗r '=e R , and r is a unit of R.

Quotient Groups

If G is an abelian group with operation * and H any subgroup, then the left cosets of H in G also form
an abelian group, where the operation * on cosets is induced from the operation in G. We denote the
group of left cosets of H in G by G/H and is called a quotient group.

Example: ℤ is an additive group, thus the elements of the congruence classes ℤ/mℤ form a group
under addition. A more explicit notation for a congruence class [a]m ∈ ℤ/mℤ is then a+mℤ .

Let G be an abelian group with operation *, identity e and H any subgroup. Let G/H be the set of left
cosets of H in G. We define an operation on G/H, induced by * in G as (a∗H )∗(b∗H )=(a∗b)∗H .
Before claim that G/H is an abelian group, we want to show that the operation is well-defined.
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Proposition. Suppose a∗H=a1∗H and b∗H=b1∗H . Then (a∗b)∗H=(a1∗b1)∗H .

Proof. It suffices to show that if we pick any element out of the coset a∗H and any element out of the
coset  b∗H , and multiply them in  G, we get an element of the coset  (a∗b)∗H . Let a1=a∗h and
b1=b∗h  for some h , h1∈H . If we take the product a1∗b1=(a∗h)∗(b∗h1) , then since G is abelian,
we  can  rearrange  the  product  (a∗h)∗(b∗h1)=(a∗b)∗(h∗h1) .  Since  h∗h1∈H ,  the  result  is  in
(a∗b)∗H .

Theorem.  If G is an abelian group and H is a subgroup of G, then the set of left cosets G/H is an
abelian group, with the operation on cosets induced by the operation on G.
Proof. Once that we see that * on the cosets is well defined, the group properties follows easily since
they hold in G. The set e∗H is the identity element of G /H , and the inverse of a∗H is a−1∗H where
a−1  is the inverse of a in G. 

To show that ℤ/mℤ is a group under addition we must prove that the operation + is well-defined.
Given two cosets a+mℤ and b+mℤ then the sum has been defined as a+b+mℤ .

The Chinese Remainder Theorem

Given two natural numbers  m and  n greater than 1 and a, b be any integers. Consider the following
system of two linear congruences

{x≡a(mod m)
x≡b(mod n)

 equivalent to {x=a+mz
x=b+ny

for some integers m, y

Theorem (existence).   There is a solution  x=x0   to the system if and only if the greatest common
divisor of m and n divides a - b.
Proof. The system is equivalent to the equation (b−a)=mz−ny . Let d=(m ,n) .   (→) If  d does not
divide b – a  then there cannot be integers z and y satisfying the given equation. (←) Conversely if d
divides a – b then, using  Bezout’s identity we can find two integers  s and  t such that  d=ms+nt .
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Assuming a−b=qd , for some integer q, we multiply both sides by q obtaining a−b=msq+ntq . We
can  then  set  z=sq and  y=-tq.  The  solution  can  be  thus  derived  using  the  system  equations:
x=a+mz=b+ny=a+msq=b−ntq .

Theorem (form). If x=x0 is a solution. Then the set of integers x that satisfy the two congruences is
the  same  as  the  set  of  x  that  satisfy x≡x0(mod [m , n]) i.e. x=x0+[m ,n ]k where [m, n] is  the  least
common multiple of m and n.
Proof. (→) First we show that any solution has that form. Let x1 be another solution. Then x1 – x0  is a
solution to the homogeneous pair of congruences.
x1≡a(mod m)∧x0≡a(mod m) → x1 – x0≡0 (mod m) → x1−x0=m k1

x1≡b(mod n)∧ x0≡b (mod n) → x1 – x0≡0(mod n) → x1−x0=nk 2

That means that x1 – x0 is a common multiple of m and n, thus by definition is then a common multiple
of the least common multiple: x1 – x0=[m, n] k and thus that x1≡x0(mod [m ,n]) .

(←) Conversely, we have to show that any number congruent to x0 modulo [m,n] is a solution.

Let  x be a number satisfying  x≡x0(mod [m , n]) . Then trivially  x≡x0(mod m)  and  x≡x0(mod n) .
And so x is also a solution to the original pair of congruences.

In general, given that x=a+mz=b+ny , to find x we don’t need to find both z and y. We can reduce the
calculations by directly solving a single congruence modulo the smaller of the two moduli.
For example: a+mz≡b+ny (mod n) → mz≡(b−a)(mod n)

At this point is sufficient to find m−1 modulo n, that should be easier than the original problem.

Corollary.  We can express the set of integers that solve a system of two congruences as the set of
integers that satisfy a single congruence. Given x0 a solution to the system: x≡x0(mod [m , n]) .

The above corollary allow us to extend the resolution method to systems of three or more congruences.

Corollary. If m and n are coprime then there is always a solution to the system.

Chinese Remainder Theorem (existence). Let m1, m2, …,mn be pairwise coprime natural numbers > 1
and a1, a2, …,an  be arbitrary integers. Then there is a solution to the system:

{x≡a1(mod m1)
x≡a2(mod m2)

...
x≡an(mod mn)
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Proof. By induction of  n. The base case is the one for two congruences and is true for the corollary
above.  For n>2 we  assume  the  theorem  true  for n−1 congruences.  We  use  the  corollary  for  two
congrunces to replace the first two congruences by a single congruence:  x≡x0(mod m1 m2) . Then to
show that there is a solution to the original set of  n congruences, we need to show that there is a
solution for the set of n − 1 congruences consisting of all but the first two of the n original congruences,
together  with  the  congruence  x≡x0(mod m1 m2) .  Observe  that (m1m2 , m j)=1 for  every  j=3,…,n
Thus the set of  n − 1 congruences has a solution by the induction hypothesis, and the solution is a
solution of the original n congruences. 

Chinese Remainder Theorem (form). If x0 is a solution, then the set of integers x that satisfy the
system of congruences is the same as the set of x that satisfy x≡x0(mod [m1 , m2 , ...,mn])

Proof.  Extending the lcm to more than two elements,  the proof  is  similar  to  the  theorem for  two
congruences.

This part of the theorem stress the fact that, given a solution x0 of the original system, every solution to
the original system is a solution of x≡x0(mod [m1 , m2 , …, mn]) , and vice-versa.

Alternative resolution method

The  idea  is  to  solve  a  collection  of  “special”  systems  and  then  obtain  a  solution  of  the  original
congruence as a linear combination of the solutions of the special systems.

Example for two congruences:

{x≡a(mod m)
x≡b(mod n)

If (m ,n)=1 then we known that a solution exists. First we  solve the two systems:

{x≡1(mod m)
x≡0 (mod n) {x≡0(mod m)

x≡1(mod n)

Let e1 and e2 be the solutions to the first and the second systems, respectively. Then

e1=1+mx1=n y1 and e2=mx2=1+ny2

Making both congruences modulo m we obtain 1≡n y1(mod m) and −1≡n y2(mod m)

Finding the inverse of n modulo m we find y1 and consequently e1 .

Similarly, to find y2 we find the inverse of -n modulo m (equals to the negative of the inverse of n).
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Now we can find a solution x0 to the original system by setting
x0=a e1+be2

Check: a e1+b e2≡a⋅1+b⋅0≡a(mod m)  and a e1+b e2≡a⋅0+b⋅1≡b(mod n)

The method can be easily extended to be used with systems with more than two congruences.
Tip: in each derived system there is only one congruence with 1 on the right hand side, the others are
set congruent to 0. Merge together, in a single congruence, the ones congruent to zero, setting the
modulus equal to the least common multiple (lcm).
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